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available in its entirety for random access is not applicable as we do not have the entire
dataset at the launch of the learning, the data continue to arrive at a rapid rate, we can
not access the data randomly, and we can make only one or at most a small number of
passes on the data in order to generate the clustering results. These types of data are
referred to as data streams. The data stream clustering problem requires a process
capable of partitioning observations continuously while taking into account restrictions
of memory and time. In the literature of data stream clustering methods, a large
number of algorithms use a two-phase scheme which consists of an online component
that processes data stream points and produces summary statistics, and an offline
component that uses the summary data to generate the clusters. An alternative class is
capable of generating the final clusters without the need of an offline phase. This paper
presents a comprehensive survey of the data stream clustering methods and an
overview of the most well-known streaming platforms which implement clustering.
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Background
In today’s applications, evolving data streams are ubiquitous. Indeed, examples of appli-
cations relevant to streaming data are becoming more numerous and more important,
including network intrusion detection, transaction streams, phone records, web click-
streams, social streams, weather monitoring, etc. There is active research on how to store,
query, analyze, extract and predict relevant information from data streams. Clustering is
a key data mining task. This is the problem of partitioning a set of observations into clus-
ters such that the intra-cluster observations are similar (or close) and the inter-cluster
observations are dissimilar (or distant). The other objective of clustering is to reduce the
complexity of the data by replacing a group of observations (cluster) with a representative
observation (prototype).

In this paper, we consider the problem of clustering data in the form of a stream, i.e.
a sequence of potentially infinite, non-stationary data (the probability distribution of the
unknown data generation process may change over time) arriving continuously (which
requires a single pass through the data) where random access to the data is not feasible
and storing all the arriving data is impractical. When applying data mining techniques,
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and specifically clustering algorithms, to data streams, restrictions in execution time and
memory have to be considered carefully. To deal with time and memory restrictions,
many of the existing data stream clustering algorithms modify traditional non-streaming
methods to use the two-phase framework proposed in [1] to deal with streaming data, e.g.,
DenStream [2] is an extension of DBSCAN algorithm, StreamKM++ [3] of k-means++,
StrAP [4] of AP, etc.

Real-time processing means that the ongoing data processing requires a very low
response delay. The velocity, which refers to that Big Data are generated at high speed
(speed of data in and out), is an important concept in the Big Data domain [5]. With
the increasing importance of data stream mining applications, many streaming plat-
forms have been proposed. These can be classified in two categories: traditional or
non-distributed such as MOA [6] and distributed streaming platforms such as Spark
Streaming [7] and Flink [8]. The latter two, may be considered as the most widely used
streaming platforms. These distributed streaming systems are based on two processing
models, record-at-a-time and micro-batching. On a record-at-a-time processing model,
long-running stateful operators process records as they arrive, update the internal state,
and send out new records. On the other hand, the micro-batching processing model runs
each streaming computation as a series of deterministic batch computations on small time
intervals, which is implemented in Spark Streaming [7].

General surveys have been recently published in the literature for mining data streams
[9-13]. The authors of [14] introduced a taxonomy to classify data stream clustering algo-
rithms. The work presented in [15] is a thorough survey of state-of-the-art density-based
clustering algorithms over data streams. This paper presents a thorough survey of the
state-of-the-art for a wide range of data stream clustering algorithms and an overview
of the most well-known streaming platforms. The remainder of this paper is orga-
nized as follows. Section “Data stream clustering methods” presents in a comprehensive
manner the most relevant works on data stream clustering algorithms. These algo-
rithms are categorized according to the nature of their underlying clustering approach.
Section “Streaming platforms” overviews the most well-known streaming platforms with
a focus on the streaming clustering task. Section “Conclusion” concludes this paper.

Data stream clustering methods

This section discusses previous works on data stream clustering problems, and highlights
the most relevant algorithms proposed in the literature to deal with this problem. Most of
the existing algorithms (e.g. CluStream [1], DenStream [2], StreamKM++ [3], or ClusTree
[16]) divide the clustering process in two phases: (a) Online, the data will be summarized;
(b) Offline, the final clusters will be generated. Figure 1 is a flowchart of the data stream
clustering algorithms presented in this paper. These algorithms are categorized according
to the nature of their underlying clustering approach.

GNG based algorithms

Growing Neural Gas

Growing Neural Gas (GNG) [17] is an incremental self-organizing approach which
belongs to the family of topological maps such as Self-Organizing Maps (SOM) [18] or
Neural Gas (NG) [19]. It is an unsupervised clustering algorithm capable of representing
a high dimensional input space in a low dimensional feature map. Typically, it is used for
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Fig. 1 Data stream clustering methods. The presented algorithms categorized according to the nature of
their underlying clustering approach

finding topological structures that closely reflect the structure of the input distribution.
Therefore, it is used for visualization tasks in a number of domains [19, 20] as neurons
(nodes), which represent prototypes, are easy to understand and interpret.

The GNG algorithm constructs a graph of nodes in which each node has its associated
prototype. Prototypes can be regarded as positions in the input space of their correspond-
ing nodes. Pairs of nodes are connected by edges (links), which are not weighted. The
purpose of these links is to define the topological structure. These links are temporal in
the sense that they are subject to aging during the iteration steps of the algorithm and are
removed when they become “too old” [20].

Starting with two nodes, and as a new data point is available, the nearest and the second-
nearest nodes are identified, linked by an edge, and the nearest node and its topological
neighbors are moved toward the data point. Each node has an accumulated error variable.
Periodically, a node is inserted into the graph between the nodes with the largest error
values. Nodes can also be removed if they are identified as being superfluous. This is an
advantage compared to SOM and NG, as there is no need to fix the graph size in advance.
Algorithm 1 outlines an online version of the GNG approach. In this version, unlike the
standard approach of GNG, the data is seen only once.

A number of authors have proposed variations on the Growing Neural Gas (GNG)
approach. The GNG algorithm creates a new node every A iterations (A is fixed by the
user as an input parameter). Hence, it is not adapted for data streams, or non-stationary
datasets, or to novelty detection. In order to deal with non-stationary datasets, the author
of [21] has investigated modifying the network by proposing an on-line criterion for
identifying “useless” nodes. The algorithm proposed is known as the Growing Neural
Gas with Utility (GNGU). Slow changes of the distribution are handled by adaptation of
existing nodes, whereas rapid changes are handled by removal of “useless” neurons and
subsequent insertions of new nodes in other places.

The authors of [22] modified GNG to detect incrementally emerging cluster structures.
The proposed GNGC algorithm is able to match the temporal distribution of the original
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Algorithm 1: GNG online
Data: DS = {x1,X3,...,X,}
Result: set of nodes C = {cj, ¢y, . . .} and their prototypes W = {w,,, w,, ...}

1 Initialize node set C to contain two nodes, ¢; and ¢p: C = {c1,¢2};

2 while there is a data point to proceed do

3 Get the next data point in the data stream, x;;

4 Find the nearest node bmu; and the second nearest node bmus;
5 Update edges as described in Algorithm 2;

6 if the number of data points passed is an integer multiple of a parameter  then
7 L Insert a new node as described in Algorithm 3;

8 Delete each isolated node;

9 Finally, decrease the error of all units;

Algorithm 2: Edge Management

1 Increment the age of all edges emanating from bmu; and weight them;
2 if bmuy and bmuy are connected by an edge then

3 ‘ set the age of this edge to zero

4 else

5 L create an edge between bmu; and bmuy, and mark its time stamp;

6 Remove edges whose age is greater than age; x;

Algorithm 3: Node Insertion

1 Find node g with the maximum accumulated error;

2 Find the neighbor f of g with the largest accumulated error;

3 Add the new node, r, half-way between nodes g and f: w, = 0.5(w, + wy);

4 Insert edges connecting the new node r with nodes g and f, and remove the original

edge between g and f;

dataset by creating a new node whenever the received new data point is too far from its
nearest node. It is noted that the algorithm is computationally demanding.

The clustering method proposed in [23] consists of two steps. In the first step, the data
are prepared by generating the Voronoi partition using a modified GNG algorithm (which
does not exceed linear complexity). The result is that the number of intermediate clusters
is much smaller than the number of original objects. In the second step the intermediate
clusters are clustered using conventional algorithms that have a much higher computa-
tional complexity (for this reason they should not be used for clustering the full volume
of initial data). The approach examines hierarchical clustering of GNG units using sin-
gle linkage and Ward’s method as linkage criteria. Although the clustering results look
promising, the approach has the drawback that they have to manually identify the “right”
level in the cluster hierarchy to obtain an adequate clustering of the input space.
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GWR

The ‘Grow When Required’ (GWR) network [24] may add a new node at any time,
whose position is dependent on the input and the current winning node. The GWR deals
with the problem of novelty detection by adding new nodes into the network structure
whenever the activity of the current best-matching node is below some threshold, which
implies that the best-matching node is not trained to deal with that particular input. This
means that the network grows very quickly when new data is presented, but stops grow-
ing once the network has matched the data to a given accuracy. This has benefits in that
there is no need to decide in advance how large the network should be, as nodes will be
added until the network is saturated. This means that for small datasets the complexity
of the network is significantly reduced. In addition, if the dataset changes at some time
in the future, further nodes can be added to represent the new data without disturbing
the network that has already been created [24, 25]. Considering one iteration of the GWR
algorithm, GWR has approximatively the same time complexity as one iteration of GNG.
Hence, the complexity of GWR is O(knm) where k is the number of iterations, # is the
number of data points of the data stream m is the number of nodes in the graph. For more
details on the complexity of GNG the reader is referred to [26].

IGNG

Still in the same idea of relaxing the constraint of periodical evolution of the network,
the IGNG [27] algorithm has been proposed. In this algorithm a new neuron is created
each time the distance of the current input data to the existing neuron is greater than a
predefined fixed threshold o, which is dependent on the global datasets. However, one
disadvantage of this algorithm is the global character of the parameter ¢ and also that
it must be computed prior to the learning. In order to resolve this weakness, I2GNG
[28] associates a threshold variable o to each neuron. However, its major drawback is the
initialization of the o values at the creation of each node. The authors of [29] address the
problem of choosing the final winner neuron among the many input equidistant neurons.
They proposed some adaptations of the IGNG and [2GNG algorithms. Notably, the use of
a labeling maximization approach as a clustering similarity measure (IGNG-F) to replace
the distance in the winner selection process.

The ability of self-organizing neural network models to manage real-time applications,
using a modified learning algorithm for a growing neural gas network is addressed in
[30]. The proposed modification aims to satisfy real-time temporal constraints in the
adaptation of the network. The proposed learning algorithm can add a dynamic num-
ber of neurons per iteration. Indeed, a detailed study has been conducted to estimate
the optimal parameters that keep a good quality of representation in the available time.
The authors concluded that the use of a large number of neurons made it difficult
to obtain a representation of the distribution of training data with good accuracy in
real-time [30, 31].

AING [32] is an incremental GNG that learns automatically the distance thresholds of
nodes based on its neighbors and data points assigned to the node of interest. It merges
nodes when their number reaches a given upper-bound.

G-Stream
More recently, G-Stream [33, 34] was proposed as a data stream clustering approach
based on the Growing Neural Gas algorithm. G-Stream uses a stochastic approach to
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update the prototypes, and it was implemented on a “centralized” platform, which can
be summarized as follows: starting with two nodes, and as a new data point is reached,
the nearest and the second-nearest nodes are identified, linked by an edge, and the near-
est node with its topological neighbors are moved toward the data point. Each node has
an accumulated error variable and a weight, which varies over time using a fading func-
tion. Using an edge management procedure, one, two or three nodes are inserted into the
graph between the nodes with the largest error values. Nodes can also be removed if they
are identified as being superfluous.

G-Stream can discover clusters of arbitrary shape in an evolving data stream, whose
main features and advantages are:

(i) the topological structure is represented by a graph wherein each node represents a
cluster, which is a set of “close” data points, and neighboring nodes (clusters) are
connected by edges. The graph size is not fixed but may evolve;

(i)  to reduce the impact of old data whose relevance diminishes over time, G-Stream
uses an exponential fading function

f@) = o~ M(t—to)

where A1 > 0, defines the rate of decay of the weight over time, t denotes the
current time and ¢y is the timestamp of the data point. The weight of a node is
based on data points associated with it:

m
weight(c) = » 2741t
i=1

where m is the number of points assigned to the node c at the current time t. If the
weight of a node is less than a threshold value then this node is considered as
outdated and then deleted (with its links). For the same reason, links between
nodes are also weighted by an exponential function;

(iii)  unlike many other data stream algorithms that start by taking a significant number
of data points for initializing the model (these data points can be seen several
times), G-Stream starts with only two nodes. Several nodes (clusters) are created in
each iteration, unlike the traditional Growing Neural Gas (GNG) [17] algorithm;

(iv)  all aspects of G-Stream (including creation, deletion and fading of nodes, edges
management, and reservoir management) are performed online;

(v)  areservoir is used to hold, temporarily, the very distant data points, compared to
the current prototypes.

However, the design of a “distributed” version of G-Stream would raise difficulties,
which are resolved by MBG-Stream [35]. This later operates with parameters to control
the decay (or “forgetfulness”) of the estimates. The MBG-Stream algorithm is imple-
mented on a distributed streaming platform based on the micro-batching processing
model, i.e., the Spark Streaming API'. In the proposed algorithm, the topological struc-
ture is represented by a graph wherein each node represents a cluster, which is a set of
“close” data points and neighboring nodes (clusters) are connected by edges. Starting with
only two nodes, the graph size is not fixed but may also evolve as several nodes (clusters)
are created in each iteration. We use an exponential fading function to reduce the impact
of old data whose relevance diminishes over time. For the same reason, links between
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nodes are also weighted by an exponential function. The data received in each interval
is stored reliably across the cluster to form an input dataset for that interval. Once the
time interval is completed, this dataset is processed via deterministic parallel operations,
such as Map and Reduce to produce new datasets representing either program outputs
or intermediate states [7]. The input data is split and the master assigns the splits to the
Map workers. Each worker processes the corresponding input split, generates key/value
pairs and writes them to intermediate files (on disk or in memory). The Reduce function
is responsible for aggregating information received from the Map functions. The algo-
rithm uses a generalization of the mini-batch GNG update rule, where the nearest node
and all of its neighbors are moved in the direction of the data point. However, in MBG-
Stream, for each batch of data X,,, we assign all points x; to their best match unit, compute
new cluster centers, then update each cluster. The update rule (the adaptation step) in a
mini-batch version without taking into account the neighbors of the referent is described

in Eq. 1 as:
(t+1) wOna + 20 mf’
We T 0 ® )
ne'o + me
whereas Eq. 2 updates the number of points assigned to the cluster,
A 4 @

where wgt) is the previous center for the cluster, ngt) is the number of points assigned to

the cluster thus far, zgt) is the new cluster center from the current batch, and mgt) is the

number of points added to the cluster c in the current batch.

Hierarchical stream methods

A hierarchical clustering method groups the given data into a tree of clusters which is
useful for data summarization and visualization. This is a binary-tree based data struc-
ture called the dendrogram. Once the dendrogram is constructed, one can automatically
choose the right number of clusters by splitting the tree at different levels to obtain differ-
ent clustering solutions for the same dataset without rerunning the clustering algorithm
again. Hierarchical clustering can be achieved in two different ways, namely, bottom-
up and top-down clustering. Though both of these approaches utilize the concept of
dendrogram while clustering the data, they might yield entirely different sets of results
depending on the criterion used during the clustering process [36]. In hierarchical clus-
tering once a step (merge or split) is done, it can never be undone. Methods for improving
the quality of hierarchical clustering have been proposed such as integrating hierarchical
clustering with other clustering techniques, resulting in multiple-phase clustering such as
BIRCH [37].

BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) incrementally and
dynamically clusters multi-dimensional data points to try to produce the best quality clus-
tering with the available resources (i. e., memory and time constraints) by making a single
scan of the data, and to improve the quality further with a few additional scans. It should
be noted that the BIRCH method is not designed for clustering data streams and cannot
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address the concept drift problem. The key characteristic of the BIRCH is to introduce
a new data structure called a clustering feature (CF) as well as a CF-tree. The CF can be
regarded as a concise summary of each cluster. This is motivated by the fact that not every
data point is equally important for clustering and we cannot afford to keep every data
point in the main memory given that the overall memory is limited. On the other hand,
for the purpose of clustering, it is often enough to keep up to the second order of data
moment. In other words, CF is not only efficient, but also sufficient to cluster the entire
data set [36, 37].

More precisely, a CF structure is a triple (N, LS, SS), where N is the number of data
points in the cluster, LS is the linear sum of the N data points, and SS is the squared sum of
the N data points. The CF vector has two main properties giving the incremental aspect,
in an intuitive way, to any algorithm that uses this structure:

e Incrementality If a point x is added to the cluster, the sufficient statistics are
updated as follows:

N; < N; + 1;
LS,‘ < LSL‘ + x;
SS; < SS; + x%;

e Additivity If CF; = (N1, LS1,S8S1) and CFy = (Ny, LSy, 8S2) are the CF vectors of
two disjoint clusters, merging them is equal to the sum of their parts. The additive
property allows us to merge sub-clusters incrementally without accessing the original
data set.

CF1 4+ CFy = (N1 + Ny, LS1 + LS», 8851 + SS»).

Figure 2 presents the CF-tree structure in BIRCH. The CF-tree is a height-balanced tree
which keeps track of the hierarchical clustering structure for the entire data set.

BIRCH requires two user defined parameters: B the branch factor or the maximum
number of entries in each non-leaf node; and T the maximum diameter (or radius) of any
CF in a leaf node. The maximum diameter T defines the examples that can be absorbed
by a CF. Increasing 7, more examples can be absorbed by a CF node and smaller CF-Trees
are generated. Each node in the CF-tree represents a cluster which is in turn made up of
at most B sub-clusters. All the leaf nodes are chained together for the purpose of efficient
scanning.

When a data point is available, it traverses down the current tree from the root, until
it finds the appropriate leaf following the closest-CF path, with respect to the L; or L
norms. The insertion on the CF-tree can be performed in a similar way as the insertion
in the classic B-tree. If the closest-CF in the leaf cannot absorb the data point, a new CF
entry is created. If there is no room for new leaf, the parent node is split. A leaf node
might be expanded due to the constraints imposed by B and T. The process consists of
taking the two farthest CFs and creates two new leaf nodes. BIRCH operates in two main
steps: the first step builds an initial CF-tree in memory using the given amount of mem-
ory and recycling space on disk; the second step tries to cluster all the sub-clusters in
the leaf nodes, called also the “global clustering” There are two optional steps: the“tree
condensing” step which aims to refine the initial CF-tree by re-inserting its leaf entries;
and the “clustering refinement” step which re-assigns all the data points based on the
cluster centroid produced by the global clustering step.
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E-Stream
E-Stream [38] classifies the evolution of data into five categories: appearance, disap-
pearance, self evolution, merge, and split. This algorithm is an evolution-based stream
clustering method, i.e., a stream clustering method that supports the monitoring and
the change detection of clustering structures. It uses another data structure for saving
summary statistics, named the «-bin histogram. Indeed, each cluster is represented as a
Fading Cluster Structure (FCS) utilizing an «-bin histogram for each feature of the dataset.
A histogram of the cluster data values is utilized to identify cluster splits. The range of
each bin is calculated as the difference between the maximum and minimum feature
values divided by «. When the maximum or minimum value changes, a new range is cal-
culated and the values in each range are updated from the intersection between the new
and old ranges. Each cluster has a histogram of feature values, but the histogram is utilized
only for the split of active clusters. Only an active cluster can assemble an incoming data
point. If a statistically significant valley is found between two peaks in any of the marginal
histograms, the cluster is split. Figure 3 illustrates the histogram management in a split.
E-Stream starts empty, and every new point either is mapped onto one of the existing
clusters (based on a radius threshold) or a new cluster is created around it. Any clus-
ter not meeting a predefined density level is considered inactive and remains isolated
until achieving a desired weight. The weight of a cluster is the number of data elements
assigned to this cluster. The algorithm employs an exponential decay function to weigh
down the influence of older data, thus focuses on keeping an up-to-date view of the data
distribution. Clusters which are not active for a certain time period may be deleted from

the data space.
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HUE-Stream

HUE-Stream [39] which extends E-Stream in order to support uncertainty in heteroge-
neous data, i.e,, including numerical and categorical attributes simultaneously. Uncertain
data streams pose a special challenge because of the dual complexity of high volume and
data uncertainty. This uncertainty is due to errors in the reading of sensors or other hard-
ware collection technology. In many of these cases, the data errors can be approximated
either in terms of statistical parameters, such as the standard deviation, or the probability
density functions [9]. The Uncertain MICROclustering (UMicro) algorithm is proposed
as a method for clustering uncertain data streams, which enhances the micro-clusters
with additional information about the uncertainty of the data points in the clusters [40].
This information is used to improve the quality of the distance functions for the clus-
ter assignments. HCluStream [41] extends the definition of the cluster feature vector to
include categorical features, replaces the modified k-means clustering with the corre-
sponding k-prototypes clustering which is able to handle heterogeneous attributes. The
centroid of continuous attributes and the histogram of the discrete attributes are used to
represent the micro-clusters, and the k-prototype clustering algorithm is used to create
the micro-clusters and macro-clusters.

The distance function, cluster representation and histogram management are intro-
duced for the different types of clustering structure evolution. A distance function
between the probability distributions of two objects is introduced to support uncertainty
in categorical attributes. To detect changes in the clustering structure, the proposed dis-
tance function is used to merge clusters and find the closest cluster of a given incoming
data and the proposed histogram management to split clusters for categorical data. To
decrease the weight of old data over time, a fading function is used. Experimental results
show that HUE-Stream gives better cluster quality, in terms of purity and the F-measure,
compared to UMicro for the KDD-CUP’99 dataset [39].

ClusTree

ClusTree [16] is a parameter-free stream clustering algorithm that is capable of processing
the stream in a single pass, with limited memory usage. It always maintains an up-to-date
cluster model and reports concept drift, novelty, and outliers. This is ensured by weighing
data points with an exponential time-dependent decay function. Moreover, this approach
makes no apriori assumptions on the size of the clustering model, but dynamically
self-adapts. ClusTree is an anytime algorithm that organizes micro-clusters in a tree struc-
ture for faster access and automatically adapts micro-cluster sizes based on the variance
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of the assigned data points. The tree used in ClusTree is a balanced multi-dimensional
indexing structure with the following properties:

e an inner node contains between m and M entries. Leaf nodes contain between I and
L entries. The root has at least one entry (m, M, I and L are input parameters).

® an entry in an inner node stores: (i) a cluster feature of the objects that it represents.
(ii) a cluster feature of the objects in the buffer. (iii) a pointer to its child node.

e an entry in a leaf stores a cluster feature of the data point(s) it represents.

e a path from the root to any leaf node has always the same length (balanced).

So, it uses also the micro-cluster structure as a compact representation of the data dis-
tribution. Anytime algorithms denote approaches that are capable of delivering a result
at any given point in time, and of using more time if it is available to refine the result.
The basic idea is to maintain measures for incremental computation of the mean and
variance of micro-clusters so that the infeasible access to all past stream objects is no
longer necessary. We recall that a micro-cluster is a cluster feature tuple (or a variant of
it) CF = (n,LS, SS) of the number 7 of represented data points, their linear sum LS, and
their squared sum SS. In the proposed method, CFs are created and updated by extending
index structures from the R-tree family [42]. Such hierarchical indexing structures pro-
vide the means for efficiently locating the right place to insert any object from the stream
into a micro-cluster. The idea is to build a hierarchy of micro-clusters at different lev-
els of granularity. Given enough time, the algorithm descends the hierarchy in the index
to reach the leaf entry that contains the micro-cluster that is most similar to the current
object. If this micro-cluster is similar enough, it is updated incrementally by this object’s
values. Otherwise, a new micro-cluster may be formed [16]. However, in anytime cluster-
ing of streaming data, there might not always be enough time to reach leaf level to insert
the object. To deal with this, the authors provide some strategies for anytime inserts. By
incorporating local aggregates, i.e., temporary buffers for “hitchhikers’, a solution is pro-
vided for the easy interruption of the insertion process so that it can be simply resumed at
any later point in time. For very fast streams, aggregates of similar objects allow insertion
of groups instead of single objects for even faster processing. For slower stream settings,
alternative insertion strategies that exploit possible idle times of the algorithm to improve
the quality of the resulting clustering are proposed [16].

Taking the means of the CFs as representatives, we can apply a k-center clustering or
density based clustering (e.g. k-means or DBSCAN) to detect clusters of arbitrary shape.

Partitioning stream methods

A partitioning-based clustering algorithm organizes the objects into some number of par-
titions, where each partition represents a cluster. The clusters are formed based on a
distance function like the k-means algorithm which leads to finding only spherical clusters
and the clustering results are usually influenced by noise.

CluStream

The idea behind the CluStream [1] method is to divide the clustering process into an
online component which periodically stores detailed summary statistics and an offline
component which uses only this summary statistics. The offline component is utilized
by the analyst who can use a wide variety of inputs (such as time horizon or number
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of clusters) in order to provide a quick understanding of the broad clusters in the data
stream. The summary information is defined by the following structures:

¢ Micro-clusters: Statistical information about the data locality in terms
micro-clusters are maintained. The micro-cluster structure is a temporal extension
of the cluster feature vector [37]. The additivity property of the micro-clusters makes
them a natural choice for the data stream problem. More precisely, a micro-cluster is
tuple (N, LS, SS, LST, SST) where (N, LS, SS) are the three components of the CF
vector (namely, the number of data points in the cluster, N; the linear sum of the N
data points, LS; and the squared sum of the N data points, SS). The two other
components are LST and SST (the sum and the sum of the squares of the time
stamps of the N data points).

¢ Pyramidal time frame: The micro-clusters are stored at time snapshots which follow
a pyramidal pattern. This pattern provides an effective trade-off between the storage
requirements and the ability to recall summary statistics from different time horizons.

The data stream clustering algorithm proposed in [1] can generate approximate clusters
in any user-specified length of history from the current moment. The online phase stores
q micro-clusters in (secondary) memory, where g is an input parameter. Each micro-
cluster has a maximum boundary, which is computed as the standard deviation of the
mean distance of the data points to their centroids multiplied by a factor f. Each new point
is assigned to its closest micro-cluster (according to the Euclidean distance) if the distance
between the new point and the closest centroid falls within the maximum boundary. If so,
the point is absorbed by the cluster and its summary statistics are updated. If none of the
micro-clusters can absorb the point, a new micro-cluster is created. This is accomplished
by either deleting the oldest micro-cluster or by merging two micro-clusters. The oldest
micro-cluster is deleted if its time-stamp is below a given threshold § (input parameter).
The g micro-clusters are stored in a secondary storage device in particular time intervals
that decrease exponentially, which are referred to as snapshots. These snapshots allow the
user to search for clusters in different time horizons through a pyramidal time window
concept. This summary information in the micro-clusters is used by an offline compo-
nent which is dependent upon a wide variety of user inputs such as the time horizon or
the granularity of clustering. When the user specifies a particular time horizon of length
h over which to find the clusters, then we need to find micro-clusters which are specific
to that time-horizon. For this purpose, we find the additive property of the cluster feature
vector very useful. The final clusters are determined by using a modification of a k-means
algorithm. In this technique, the micro-clusters are treated as pseudo-points which are
re-clustered in order to determine higher level clusters.

StreamKM++

StreamKM++ [3] is a two-phase (online-offline) algorithm which maintains a small out-
line of the input data using the merge-and-reduce technique. The merge step is performed
by via a data structure, named the bucket set, which is a set of L buckets (also named
buffers), where L is an input parameter. The reduce step is performed by a significantly
different summary data structure that is suitable for high-dimensional data, the coreset
tree, when we consider that it reduces 2m data points to m data points (m is an input
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parameter). The advantage of such a coreset is that we can apply any fast approximation
algorithm (for the weighted problem) on the usually much smaller coreset to compute an
approximate solution for the original dataset more efficiently.

The coreset tree is constructed as follow. First, the tree has only the root node v, which
contains all the 2m data points in the set of data points E,. The prototype of the root
node w;, is chosen randomly from A, and N, = |E,| = 2m. The computation of the sum
of squared distances of the data points in E, to w, (SSE,) follows from the definition of
wy. Afterwards, two child nodes for v are created: v; and vy. To create these nodes, it is
necessary to choose a data point from E, with probability proportional to %W, V¥ €
E,, i.e, the data points that are farthest away from w, has the highest probability of being
selected. We call the selected data point w,,. The next step is to allocate the data points in
E, to E,q and E,, such that:

E, = {xi €E, | Dist(xi, wy) < Dist(xi, wv/)} ,Ev, =E,\ E,,.

Consequently, the summary statistics of the child nodes v; and v, are updated. This is
the expansion step of the tree, which creates two child nodes for a given inner node. When
the tree has many leaf nodes, we have to decide which one should be expanded first. In this
case, we start from the root node of the coreset tree and descend it by iteratively selecting
a child node with probability proportional to %, until a leaf node is reached for the
expansion step to be re-started. The coreset tree expansion stops when the number of leaf
nodes is m.

When a new data point arrives, it is stored in the first bucket. If the first bucket is
full, all of its data are moved to the second bucket. If the second bucket is full, the two
buckets are merged resulting in 2m data points, which are then reduced to m data points,
by the construction of a coreset tree, as previously detailed. The resulting m data points
are stored in the third bucket, unless it is also full, and then again a new merge-and-
reduce step is needed [3, 14]. In its offline phase, the k-means++ [43], which is executed
on an input set of size m, is used for finding the final clusters. The k-means++ method is
a seeding procedure for the k-means algorithm that guarantees a solution with a certain

quality and gives good practical results.

StrAP

StrAP [4] is an extension of the Affinity Propagation (AP) [44] algorithm for data streams,
which uses a reservoir for saving potential outliers. The Affinity Propagation approach
proposes an equivalent formulation of the k-medoids problem in the sense that a proto-
type is an effective data point, with the difference that the number of clusters to be found
is not fixed. Formulating the clustering problem in terms of energy minimization, AP out-
puts a set of clusters, each of which is characterized by an actual data point, referred to
as an exemplar or a prototype; the penalty value parameter controls the cost of adding
another prototype. AP provides some asymptotic guarantees of the optimality of the solu-
tion. The trade-off for these properties is the AP’s quadratic computational complexity,
excluding its use on large scale datasets. The StrAP algorithm, as an online version of AP,
proceeds by incrementally updating the current model if the current data point fits the
model, and putting it in a reservoir otherwise. A change point detection test enables StrAP
to catch drifting exemplars that significantly deviate away. StrAP involves four main steps
as illustrated in Algorithm 4 with a diagram in Fig. 4 [4]:
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Fig. 4 Diagram of StrAP algorithm [4]

e The first batch of data is used by AP to identify the first clusters and initialize the
stream model.

® As the stream flows in, each data point x; is compared to the prototypes; if too far
from the nearest exemplar, x; is put in the reservoir, otherwise the stream model is
updated accordingly.

e The data distribution is checked for change point detection, using the Page-Hinkley
significance test.

e Upon triggering the change detection test, or if the number of outliers exceeds the
reservoir size, the stream model is rebuilt based on the current model and reservoir,
using a weighted version of AP (WAP).

Algorithm 4: StrAP

Data: DS = {x1,Xy,...,Xy,}, fit threshold ¢
1 Init: StrAP Model < AP(x3,...,X7);
2 Reservoir = {};

3 fort > T do
4 Compute c; = nearest cluster to xg;
5 if dist(c;,x;) < € then
6 ‘ Update StrAP model;
7 else
8 L Reservoir < xy;
9 if Restart criterion then
10 Rebuild StrAP model;
11 L Reservoir = {};

The model of the data stream used in StrAP is inspired by DenStream [2]. It consists of
a set of 4-tuples (c;, n;, Xj, t;), where c; ranges over the clusters, #; is the number of items
associated to cluster ¢;, &; is the distortion of ¢; (sum of d(x, c;)%, where x ranges over all
data points associated to c;), and ¢ is the last time stamp when a data point was associated
to ¢;.

At time ¢, the data point x; is considered and its nearest cluster ¢; (w.r.t. distance d) in
the current model is selected; if d(x;, ¢;) is less than some threshold §, heuristically set

to the average distance between points and clusters in the initial model, x; is assigned to
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the i-th cluster and the model is updated accordingly; otherwise, x; is considered to be an
outlier, and put into the reservoir [4].

Approximations of the k-means algorithm in the one-pass streaming setting have been
proposed in [45-47]. The streaming k-means algorithm proposed in [45] is based on a
divide and conquer approach. It uses the result of [43] as a subroutine, finding 3k logk
centers of each block. Their experiment showed that this algorithm is an improvement
over an online version of k-means algorithm and was comparable to the batch version of
k-means.

The High-dimensional Projected Stream clustering method (HPStream) [48] introduces
the concept of projected clustering to data streams. This algorithm is a projected clus-
tering for high-dimensional streaming data with higher clustering quality compared to
CluStream [1].

SWClustering uses an EHCF (Exponential Histogram of Cluster Features) structure by
combining Exponential Histogram with Cluster Feature to record the evolution of each
cluster and to capture the distribution of recent data points [49]. It tracks the clusters in
evolving data streams over sliding windows.

Density-based stream methods

Density-based algorithms are based on the connection between regions and density func-
tions. In these types of algorithms, dense areas of objects in the data space are considered
as clusters, which are segregated by low density area (noise). These algorithms find clus-
ters of arbitrary shapes and generally they require two parameters: the radius and the
minimum number of data points within a cluster.

The main challenge in the streaming scenario is to construct density-based algorithms
which can be efficiently executed in a single pass of the data, since the process of den-
sity estimation may be computationally intensive [9]. Amini [15] gives a survey on recent
density-based data streams clustering algorithms.

DenStream

DenStream [2] is a density-based data stream clustering algorithm that also uses a fea-
ture vector based on the CF vector. By creating two kinds of micro-clusters (potential and
outlier micro-clusters), in its online phase, DenStream overcomes one of the drawbacks of
CluStream, its sensitivity to noise. Potential and outlier micro-clusters are kept in separate
memories since they require different processing. Each potential-micro-cluster structure
has an associated weight w that indicates its importance based on temporality. The weight
of each data point decreases exponentially with time ¢ via a fading function f(£) = 27,
where A > 0. If the weight w = Z;’zl f(t — Tj) is above a threshold input parameter p
then the corresponding cluster is considered as a core-micro-cluster, where Tj1,. .., Ti,
are timestamps of data points pj1,...,pi. At the time ¢ if w > Su then the micro-
cluster is considered as potential-micro-cluster, else it is an outlier-micro-cluster, where 8
is the threshold of the outlier relative to core-micro-clusters (0 < 8 < 1). Micro-clusters
with no recent points tend to lose importance, i.e. their respective weights continuously
decrease over time in outdated-micro-clusters. However, the latter could grow into a
potential micro-cluster when, by adding new points, its weight exceeds the threshold.
Weights of micro-clusters are periodically calculated and decision about removing or
keeping them is made based on the weight threshold.
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When a new data point arrives, the algorithm tries to insert it into its nearest
potential-micro-cluster based on its updated radius. If the insertion is not success-
ful, the algorithm tries to insert the data point into its closest outlier micro-cluster. If
the insertion is successful, the cluster summary statistics will be updated accordingly.
Otherwise, a new outlier micro-cluster is created to absorb this point. The Euclidean
distance between the new data point and the center of the nearest potential or out-
lier micro-cluster is measured. A micro-cluster is chosen with the distance less than
or equal to the radius threshold. DenStream has a pruning method in which it fre-
quently checks the weights of the outlier-micro-clusters in the outlier buffer to guar-
antee the recognition of the real outliers. However, the non-release of the allocated
memory when either deleting a micro-cluster or merging two old micro-clusters is
considered as a limitation of the DenStream algorithm as well as the time-consuming
pruning phase for removing outliers [15]. In the offline phase, the potential-micro-
clusters found during the online phase are considered as pseudo-points and will
be passed to a variant of the DBSCAN algorithm in order to determine the final
clusters.

SOStream
SOStream [50] is a density-based clustering algorithm inspired by both the principle of
the DBSCAN algorithm and self-organizing maps (SOM) [18], in the sense that a win-
ner influences its immediate neighborhood. Generally speaking, density-based clustering
algorithms need setting a threshold manually (similarity threshold, grid size, etc.) for
which is difficult to choose the most suitable value and if it is set to an unsuitable value,
then the algorithm will suffer from over-fitting, or from unstable clustering. SOStream
addresses this problem by using a dynamically learned threshold value for each cluster
based on the idea of building neighborhoods with a minimum number of points.
SOStream is also represented by a set of micro-clusters where for each cluster a cluster
feature (CF) vector is stored, which is a tuple with three elements N; = (n;, r;, C;), n; is the
number of data points assigned to Nj, r; is the cluster’s radius and C; is the centroid.
When a new point arrives, the nearest cluster is selected, based on the Euclidean dis-
tance to existing micro-clusters, and then absorbs this point if the calculated distance is
less than a dynamically defined threshold. It also assigns the micro-clusters’ neighbors to
the nearest cluster, i.e., the centroids of clusters sufficiently close to the winning cluster
have their centroids modified to be closer to the winning cluster’s centroid. This approach
is used to assist in merging similar clusters and increasing separation between different
clusters. The neighborhood of the winner is defined based on the idea of a MinPts dis-
tance given by a minimum number of neighboring objects [2]. This distance is found by
computing the Euclidean distance from any existing clusters to the winning cluster. If the
new point is not absorbed by any micro-cluster, a new micro-cluster is created for it. In the
SOStream algorithm, merging, updating and adapting dynamically the threshold value for
each cluster are performed in an online manner. Clusters are merged if they overlap with
a distance that is less than the merge-threshold, i.e., the spheres in d-dimensional space
defined by the radius of each cluster overlap. Hence, the threshold value is a determin-
ing factor for the number of clusters. When two clusters are merged, the largest radius of
these two clusters is chosen to be the radius of the cluster to avoid losing any data points
within the clusters. However, no split feature is proposed in the algorithm. SOStream also
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uses an exponential fading function to reduce the impact of old data whose relevance

diminishes over time.

SVStream
SVStream (Support Vector based Stream clustering) [51] is a data stream clustering algo-
rithm based on support vector clustering (SVC) and support vector domain description
(SVDD).

In the Support Vector Clustering (SVC) [52] algorithm data points are mapped from
the data space to a high dimensional feature space using a Gaussian kernel. In the feature
space we look for the smallest sphere that encloses the image of the data. This sphere is
mapped back to data space, where it forms a set of contours which enclose the data points.
These contours are interpreted as cluster boundaries. Points enclosed by each separate
contour are associated with the same cluster. Support vectors are used to construct cluster
boundaries of arbitrary shape in SVC.

Support vector domain description (SVDD) [53] is a one-class classifier inspired by the
support vector classifier. The idea is to use kernels to project data into a feature space and
then to find the sphere enclosing almost all data, namely not including outliers. SVDD
has the possibility to reject a fraction of the training data points, when this sufficiently
decreases the volume of the hypersphere. One inherent drawback of SVDD, which affects
not only its outlier detection performance but also its general properties significantly, is
that the resulting description is highly sensitive to the selection of the trade-off parameter,
which is difficult to estimate in practice.

Given a set of M data elements, the Gaussian kernel parameter g and the trade-off
parameter C, the sphere structure S is defined as

S = {SV,BSV, ||ull%, Rsv, Resv}.

where,

e SV isasupport vector set.

e BSV is a bounded support vector set.

e ||u]? is the squared length of the sphere center .

® Rgy is the radius of the sphere.

® Rpsy is the maximum Euclidean distance of the bounded support vectors from the

sphere center p.

The multi-sphere set SS is defined as a set consisting of multiple spheres, that is, SS =
(S1,..., 8551}, where the superscript denotes the index of a sphere. In SVStream, the ele-
ments of a data stream are mapped to a kernel space, and the support vectors are used
as the summary information of the historical elements to construct the cluster bound-
aries of arbitrary shape. To adapt both dramatic and gradual changes, multiple spheres
are dynamically maintained, each describing the corresponding data domain presented
in the data stream. When a new data batch arrives, if a dramatic change occurs, a new
sphere is created; otherwise, only the existing spheres are updated to take into account the
new batch. The data elements of this new batch are assigned with cluster labels according
to the cluster boundaries constructed by the sphere set. Bounded support vector (BSVs)
and a newly designed BSV decaying mechanism are introduced so as to respectively iden-
tify overlapping clusters and automatically detect outliers (noise) [51]. In the clustering
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process, if two spheres are too close to each other, they should be merged. In addition,
eliminating old BSVs by the BSV decaying mechanism would help detect the tendency of
a cluster to shrink or split.

OPTICS-Stream is an extension of the OPTICS algorithm [54] to the streaming data
model. OPTICS uses a density identification method to create a one-dimensional cluster-
ordering of the data. OPTICS-Stream is an online visualization algorithm producing a
map representing the clustering structure where each valley represents a cluster [55].

PreDeConStream [56] is based on the two phase process of mining data streams, which
builds a micro-cluster-based structure to store an online summary of the streaming data.
The technique is based on subspace clustering, targeting applications with high data

dimensionality.

Grid-based stream methods

Grid-based clustering is another group of the clustering methods for data streams where
the data space is quantized into finite number of cells which form the grid structure and
perform clustering on the grids. Grid-based clustering maps the infinite number of data
records in data streams to a finite number of grids. Then, the grids are clustered based on
their density.

D-Stream

D-Stream [57] is also a two-phase scheme which consists of an online component that
processes input data stream and produces summary statistics and an offline component
that uses the summary data to generate clusters. In the online component, the algorithm
maps each input data point into a grid whereas in the offline component, it computes
the grid density and clusters the grids based on the density. The algorithm adopts a den-
sity decaying technique to capture the dynamic changes of a data stream and it can find
clusters of arbitrary shapes. Unlike other algorithms such as CluStream [1], D-Stream
automatically and dynamically adjusts the clusters without requiring user specification of
target time horizon and number of clusters. Algorithm 5 outlines the overall architecture
of D-Stream.

For a data stream, at each time step, the online component of D-Stream continuously
reads a new data point, places the multi-dimensional data into a corresponding dis-
cretized density grid in the multi-dimensional space, and updates the characteristic vector
of the density grid (Lines 4-6 of Algorithm 5). The density for a grid g, at a given time ¢,
D(g, t) is defined as the sum of the density coefficients of all data records that are mapped
to g. That is the density of g at ¢ is:

Dgty= ) D),

X€E(g,t)
where E(g, t) is the set of data points that are mapped to g at or before time ¢. The density
of any grid is constantly changing. However, the updating operation is executed only when
a new data record is mapped to that grid.

D-Steam uses the characteristic vector concept associated to each grid. This is a tuple
(tg, tm, D, label, status), where t, is the last time when g is updated, Z,, is the last time
when g is removed from grid list as a sporadic grid (if ever), D is the grid density at the
last update, label is the class label of the grid, and status = {SPORADIC, NORMAL} is a
label used for removing sporadic grids.
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The procedures initial_clustering (used in Line 8 of Algorithm 5) and adjust_clustering
(used in Line 11 of 5) update the density of all active grids to the current time, first. Once
the density of grids are determined at the given time, the clustering procedure is similar
to the standard method used by density-based clustering.

The offline component dynamically adjusts the clusters every gap time steps, where
gap is an integer parameter. After the first gap, the algorithm generates the initial clus-
ter (Lines 7-8). Then, the algorithm periodically removes sporadic grids and adjusts the
clusters (Lines 9-11) [57].

Algorithm 5: D-Stream

1 time, = 0;

2 initialize an empty hash table grid_list;

3 while there is a data point to proceed do

4 Get the next data point in the data stream, x = (x1, %2, ...,%4);

5 Determine the density grid g that contains x;

6 if gnot in grid_list then Insert g to grid_list Update the characteristic vector of
F4

7 if time. = gap then

8 L Call initial_clustering(grid_list);

9 if time, mod gap == 0 then

10 Detect and remove sporadic grids from grid_list;
11 Call adjust_clustering(grid_list);
12 time, = time, + 1;

One weakness of the approach is that a significant number of non-empty grid cells need
to be discarded in order to keep the memory requirements in check. In many cases, such
grid-cells occur at the borders of the clusters. The discarding of such cells may lead to a
degradation in cluster quality [9].

Analogously to D-Stream, MR-Stream [58] facilitates the discovery of clusters at mul-
tiple resolutions by using a grid of cells that can dynamically be sub-divided into more
cells using a tree data structure. In the online phase, it assigns new incoming data to the
appropriate cell and updates the summary information. The offline component obtains
a portion of the tree at a fixed hight / and performs clustering at the resolution level

determined by 4.

Summary

Table 1 summarizes the main features offered by each algorithm considered in terms of:
the basic clustering algorithm, whether the algorithm identifies a topological structure,
whether the links (if they exist) between clusters (nodes) are weighted, how many phases it
adopts (online and offline), the types of operations for updating clusters (remove, merge,

and split cluster), and whether a fading function is used.
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Table 1 Comparison between algorithms (WL: weighted links, 2 phases : online+offline)

Algorithms Based on Topology ~ WL  Phases Remove  Merge  Split  Fade
SVStream SVC, SVDD X X online v v v v
StreamKM++ k-means++ X X 2 phases v v v v
StrAP AP X X 2 phases v X X v
SOStream DBSCAN, SOM X X online Ve v X v
OPTICS-Stream  OPTICS X X 2 phases v v X v
IGNG NG v X online X X X X
HCluStream k-prototypes X X 2phases vV v v v
GWR NG v X online X X X X
G-Stream NG v v online v X X v
E-Stream k-means X X 2 phases v/ v v v
D-Stream - X X 2 phases v v v v
DenStream DBSCAN X X 2phases v offine X v
ClusTree k-means or DBSCAN X X 2 phases v/ offline v v
CluStream k-means X X 2 phases v offine X X
AING NG v X online X v X X

Streaming platforms

In today’s applications, evolving data streams are ubiquitous. As the need by industry for
real time analysis has emerged, an increasing number of systems to support real-time data
integration and analytics in the recent years. Generally speaking, there exists two types of
streaming processing systems. Traditional streaming platforms, on which we can imple-
ment a streaming algorithm using a traditional programming language in a sequential
manner. Distributed streaming platforms, where the data is distributed across a cluster
of machine and the processing model is implemented using the MapReduce framework.
This section gives a survey on the most well-known streaming platforms with a focus
on the streaming clustering task. Liu [59] gives a general survey on real-time processing

systems for big data.

Spark streaming
Spark Streaming [7] is an extension of the Apache Spark [60] project by adding the abil-
ity to perform online processing through a similar functional interface to Spark, such as
map, filter, reduce, etc. Spark is a cluster computing system originally developed by UC
Berkeley AMPLab. Now it is an umbrellaed project of Apache foundation. The execution
model of Spark is based on an abstraction called Resilient Distributed Dataset (RDD),
which is a distributed memory abstraction of data. Spark performs in-memory compu-
tations on large clusters in a fault-tolerant manner through RDDs [61]. Spark Streaming
runs streaming computations as a series of short batch jobs on RDDs withing a program-
ming model called discretized streams (D-Streams). The key idea behind D-Streams is to
treat a streaming computation as a series of deterministic batch computations on small
time intervals. For example, we might place the data received each second into a new
interval, and run a MapReduce operation on each interval to compute a count. Similarly,
we can perform a running count over several intervals by adding the new counts from
each interval to the old result. Spark Streaming can automatically parallelize the jobs
across the nodes in a cluster. It also supports fault recovery for a wide array of operations.
Spark Streaming comes with a new approach for fault recovery, while classical stream-
ing systems update the mutable state on a per-record basis and use either replication or
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upstream backup for fault recovery. The replication approach creates two or more copies
of each process in the data flow graph [62]. This can double the hardware cost, and if two
nodes in the same replica fail, the system is not recoverable. In upstream backup [63],
upstream nodes act as backups for their downstream neighbors by preserving tuples in
their output queues while their downstream neighbors process them. If a server fails, its
upstream nodes replay the logged tuples on a recovery node. The disadvantage of this
approach is long recovery times, as the system must wait for the standby node to catch up.

To address these issues, D-Streams employ another approach: parallel recovery. The
system periodically checkpoints some of the state RDDs, by asynchronously replicating
them to other nodes. For example, in a view count program computing hourly win-
dows, the system could checkpoint results every minute. When a node fails, the system
detects the missing RDD partitions and launches tasks to recover them from the latest
checkpoint [7].

In the streaming clustering point of view, Spartakus? is an open-source project on top
of Spark-notebook?® which provides front-end packages for some clustering algorithms
implemented using the MapReduce framework. This includes the MBG-Stream* algo-
rithm [35] (detailed in “Background” section) with an integrated interface for execution
and visualization checks. MLIib [64] gives implementations of some clustering algo-
rithms, especially a Streaming k-means® open-source code. streamDM?® is another open
source software for mining big data streams using Spark Streaming, developed at Huawei
Noah’s Ark Lab. For streaming clustering, it includes Clustream [1] and StreamKM++ [3].

Flink

Flink’ is an open source platform for distributed stream and batch data processing.
The core of Flink is a streaming iterative data flow engine. On top of the engine, Flink
exposes two language-embedded fluent APIs, the DataSet API for consuming and pro-
cessing batch data sources and the DataStream API for consuming and processing event
streams. The key idea behind Flink is the optimistic recovery mechanism that does not
checkpoint every state [8]. Therefore, it provides optimal failure-free performance and
simultaneously uses less resources in the cluster than traditional approaches. Instead of
restoring such a state from a previously written checkpoint and restarting the execution,
a user-defined, algorithm-specific compensation function is applied. In case of a failure,
this function restores a consistent algorithm state and allows the system to continue the

execution.

MOA

MOAS8 (Massive On-line Analysis) is a framework for data stream mining [6]. It includes
tools for evaluation and a collection of machine learning algorithms. Related to the
WEKA project’ (Waikato Environment for Knowledge Analysis), it is also written in Java,
while scaling to more demanding problems. The goal of MOA is a benchmark framework
for running experiments in the data stream mining context by proving storable settings for
data streams (real and synthetic) for repeatable experiments, a set of existing algorithms
and measures from the literature for comparison, and an easily extendable framework
for new streams, algorithms and evaluation methods. MOA currently supports stream
classification, stream clustering, outlier detection, change detection and concept drift
and recommender systems. Currently MOA contains several stream clustering methods
including: StreamKM++ [3], CluStream [1], ClusTree [16], DenStream [2], D-Stream [57].
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SAMOA

SAMOA!? (Scalable Advanced Massive Online Analysis) is distributed streaming
machine learning (ML) framework that contains a programing abstraction for distributed
streaming ML algorithms. It is a project started at Yahoo Labs Barcelona. SAMOA is
both a framework and a library [65]. As a framework, it allows algorithm developers to
abstract from the underlying execution engine, and therefore reuse their code on differ-
ent engines. It features a pluggable architecture that allows it to run on several distributed
stream processing engines such as Storm!!, S4!2, and Samza'. As a library, SAMOA con-
tains implementations of state-of-the-art algorithms for distributed machine learning on
streams. For streaming clustering, it includes an algorithm based on CluStream [1].

Open challenges in data stream clustering

In today’s applications, evolving data streams are ubiquitous. Mining, knowledge discov-
ery, or more specifically clustering streaming data is a recent domain compared to the
offline (or batch) model. Thus, many of the challenges, issues and problems remain to
be addressed in the streaming model. This section is devoted to discuss some challeng-
ing issues and further directions from the viewpoints of both academic research and
industrial applications [11, 14, 66—68].

Protecting privacy and confidentiality. Data streams present new challenges and
opportunities with respect to protecting privacy and confidentiality in data mining.
The main objective is to develop such data mining techniques that would not uncover
information or patterns which compromise confidentiality and privacy obligations.
Privacy-by-design seems to be an interesting paradigm to use.

Handling incomplete information. The problem of missing values, which corre-
sponds to incompleteness of features, has been discussed extensively for the offline, static
settings.

Uncertain data. In most applications we don’t have sufficient data for statistical oper-
ations so new methods are needed to manage uncertain data stream in an accurate and
fast manner.

Variety of data. Data type diversity in a given stream (text, video, audio, static image,
etc.) as well as differences in data processability (structured, semi-structured, unstruc-
tured data). Clustering these diverse types of data together, coming in a streaming form,
is very challenging. Another interesting future application of data stream clustering is
social network analysis. The activities of social network members can be regarded as a
data stream, and a clustering algorithm can be used to show similarities among members,
and how these similar profiles (clusters) evolve over time.

Synopsis, sketches and summaries. A synopsis is compact data structures that sum-
marize data for further querying. Samples, Histograms, Wavelets, Sketches describe basic
principles and recent developments in building approximate synopses (that is, lossy, com-
pressed representations) of massive data [69]. Data sketching via random projections is a
tool for dimensionality reduction. Although this technique is extremely efficient, its main
drawback is that it may ignore relevant features.

Distributed streams. Data streams are distributed in nature. For learning from dis-
tributed data, we need efficient methods in minimizing the communication overheads
between nodes. Most importantly, in applications like monitoring, centralized solu-
tions introduce delays in event detection and reaction, that can make mining systems
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inefficient. Many data clustering techniques are not trivial to parallelize. To develop
distributed versions of some methods, a lot of research is needed with practical and
theoretical analysis to provide new methods.

Evaluation of data stream algorithms. Although in the field of static classification
such tools exist, they are insufficient in data stream environments due to such problems
as: concept drift, limited processing time, verification latency, multiple stream structures,
evolving class skew, censored data, and changing misclassification costs. Indeed, in the
streaming context, we are more interested in how the evaluation metric evolves over
time [66].

Autonomous and self-diagnosis. Knowledge discovery from data streams requires
the ability for predictive self-diagnosis. A significant and useful intelligence charac-
teristic is diagnostics, not only after failure has occurred, but also predictive (before
failure) and advisory (providing maintenance instructions). The development of such
self-configuring, self-optimizing, and self-repairing systems is a major scientific and engi-
neering challenge. All these aspects require monitoring the evolution of the learning
process, taking into account the available resources, and the ability to reason and learn
about it [67, 68].

Combining offline and online models. Online (or real-time) and offline (or batch)
learning are mostly considered as mutually exclusive, but it is their combination that
might enhance the value of data the most. Lambda Architecture [70] is a useful frame-
work for designing big data applications where we can combine these two models in a
same plateform. Figure 5 is a diagram of the Lambda Architecture.

New data:
011010010...

(Speed layer ) (Batch layer h
Realtime =
www Master dataset
view ot
- J
’ Realtime v
view p ~
Serving layer
Realtime Batch Batch Batch
view @ view @ view @ view
A L )

Query:
“How many...?”

Fig.5 Lambda architecture diagram [70]
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Essentially, the Lambda Architecture comprises the following components, processes,
and responsibilities:

e New Data: All data entering the system is dispatched to both the batch layer and the
speed layer for processing.

e Batch layer: This layer has two functions: (i) managing the master dataset, an
immutable, append-only set of raw data, and (ii) to pre-compute arbitrary query
functions from scratch, called batch views.

e Serving layer: This layer indexes the batch views so that they can be queried in ad hoc
with low latency.

e Speed layer: This layer compensates for the high latency of updates to the serving
layer, due to the batch layer. Using fast and incremental algorithms, the speed layer
deals with recent data only.

e Queries: Any incoming query can be answered by merging results from both batch

views and real-time views.

Designing data stream clustering methods in a Lambda Architecture where we can
benefit from the high accuracy of the batch model is very interesting and challenging.

Conclusion

Recently, examples of applications relevant to streaming data have become more numer-
ous and more important, including network intrusion detection, transaction streams,
phone records, web click-streams, social streams, weather monitoring, etc. Indeed, the
data stream clustering problem has become an active research in recent years. This prob-
lem requires a process capable of partitioning observations continuously while taking into
account restrictions of memory and time.

In this paper, we surveyed, in a detailed and comprehensive manner, a number
of the representative state-of-the-art algorithms for the clustering over data streams.
These algorithms are categorized according to the nature of their underlying cluster-
ing approach, including GNG, hierarchical, partitioning, density, and grid-based stream
methods. Motivated by the need by industry for real time analysis, an increasing number
of systems to support real-time data integration and analytics has emerged in recent years.
We have made an overview of the most well-known open-source streaming systems,
including Spark Streaming, Flink, MOA, and SAMOA, with a focus on the streaming
clustering task.

Endnotes
1See http://spark.apache.org/streaming/
2 See https://hub.docker.com/r/spartakus/coliseum/
3See http://spark-notebook.io/
*See https://github.com/mghesmoune/spark-streaming- clustering
>See http://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means
6 See http://huawei-noah.github.io/streamDM/
7 See https://flink.apache.org/
8 See http://moa.cms.waikato.ac.nz/
9 See http://weka.wikispaces.com/
19See http://samoa-project.net/
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13See http://samza.incubator.apache.org

Acknowledgements

This work has been supported by the French Foundation FSN, PIA Grant Big data-Investissements d'Avenir. The project is
titled "Square Predict” (http://ns209168.0vh.net/squarepredict/). We thank anonymous reviewers for their insightful
remarks.

Authors’ contributions
All authors contributed equally. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 April 2016 Accepted: 14 September 2016
Published online: 01 December 2016

References

1. Aggarwal CC, Watson TJ, CtrR, Han J, Wang J, Yu PS. A framework for clustering evolving data streams. In: In VLDB.
Berlin: VLDB Endowment; 2003. p. 81-92.

2. CaoF, Ester M, Qian W, Zhou A. Density-based clustering over an evolving data stream with noise. In: SDM. SIAM;
2006. p.328-39.

3. Ackermann MR, Méartens M, Raupach C, Swierkot K, Lammersen C, Sohler C. StreamKM++: A clustering algorithm
for data streams. ACM J Exp Algorithmics. 2012;17(1):173-187.

4. Zhang X, Furtlehner C, Sebag M. Data streaming with affinity propagation. In: ECML/PKDD (2). Berlin: Springer Berlin
Heidelberg; 2008. p. 628-43.

5. Demchenko Y, Grosso P, De Laat C, Membrey P. Addressing big data issues in scientific data infrastructure. In:
Collaboration Technologies and Systems (CTS), 2013 International Conference On. [EEE; 2013. p. 48-55.

6. Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen T, Seidl T. MOA: massive online analysis, a framework
for stream classification and clustering. In: Proceedings of the First Workshop on Applications of Pattern Analysis,
WAPA 2010, Cumberland Lodge, Windsor, UK September 1-3, 2010; 2010. p. 44-50.

7. ZahariaM, DasT, LiH, HunterT, ShenkerS, Stoica I. Discretized streams: fault-tolerant streaming computation at
scale. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP '13, Farmington, PA, USA, November
3-6,2013;2013. p.423-38.

8. SchelterS, Ewen S, Tzoumas K, Markl V. “all roads lead to rome”: optimistic recovery for distributed iterative data
processing. In: 22nd ACM International Conference on Information and Knowledge Management, CIKM'13, San
Francisco, CA, USA, October 27 - November 1,2013;2013. p. 1919-28.

9. Aggarwal CC. A survey of stream clustering algorithms. In: Data Clustering: Algorithms and Applications. Chapman
and Hall/CRG; 2013. p. 231-58.

10. Nguyen H, Woon Y, Ng WK. A survey on data stream clustering and classification. Knowl Inf Syst. 2015;45(3):535-69.

11. Khalilian M, Mustapha N. Data stream clustering: Challenges and issues. CoRR. 2010;abs/1006.5261.

12. Yogita, Toshniwal D. Clustering techniques for streaming data-a survey. In: Advance Computing Conference (IACC),
2013 IEEE 3rd International. IEEE; 2013. p. 951-6.

13. Mousavi M, Bakar AA, Vakilian M. Data stream clustering algorithms: A review. Int J Adv Soft Comput Appl.
2015;7(3):13:1-13:31.

14. de Andrade Silva J, Faria ER, Barros RC, Hruschka ER, de Carvalho ACPLF, Gama J. Data stream clustering: A survey.
ACM Comput Surv. 2013;46(1):13.

15. Amini A, Teh YW, Saboohi H. On density-based data streams clustering algorithms: A survey. J Comput Sci Technol.
2014;29(1):116-41.

16. Kranen P, Assent |, Baldauf C, Seidl T. The ClusTree: indexing micro-clusters for anytime stream mining. Know! Inf
Syst. 2011;29(2):249-72.

17. Fritzke B. A growing neural gas network learns topologies. In: NIPS. MIT Press; 1994. p. 625-32.

18. Kohonen T, Schroeder MR, Huang TS, (eds). Self-Organizing Maps, 3rd edn. Secaucus, NJ, USA: Springer; 2001.

19. Martinetz T, Schulten K. A “Neural-Gas” Network Learns Topologies. Artif Neural Netw. 1991;1:397-402.

20. Beyer O, Cimiano P. Online semi-supervised growing neural gas. Int J Neural Syst. 2012;22(5):21-23.

21. Fritzke B. A self-organizing network that can follow non-stationary distributions. In: Artificial Neural Networks -
ICANN '97, 7th International Conference, Lausanne, Switzerland, October 8-10, 1997, Proceedings. Berlin: Springer
Berlin Heidelberg; 1997. p.613-8.

22. Sledge IJ, Keller JM. Growing neural gas for temporal clustering. In: 19th International Conference on Pattern
Recognition (ICPR 2008), December 8-11, 2008. Tampa. IEEE; 2008. p. 1-4.

23. Mitsyn S, Ososkov G. The growing neural gas and clustering of large amounts of data. Opt Mem Neural Netw.
2011,20(4):260-70.

24. Marsland S, Shapiro J, Nehmzow U. A self-organising network that grows when required. Neural Netw.
2002;15(8-9):1041-58.

25. Marsland S, Nehmzow U, Shapiro J. On-line novelty detection for autonomous mobile robots. Robot Auton Syst.
2005;51(2):191-206.

26. Mendes CAT, Gattass M, Lopes H. Fgng: A fast multi-dimensional growing neural gas implementation.
Neurocomputing. 2014;128:328-40.

27. Prudent, Ennaji A. An incremental growing neural gas learns topologies. In: Neural Networks, 2005. JCNN'05.
Proceedings. 2005 IEEE International Joint Conference On. MIT Press; 2005. p. 1211-1216.


http://storm.apache.org
http://incubator.apache.org/s4
http://samza.incubator.apache.org
http://ns209168.ovh.net/squarepredict/

Ghesmoune et al. Big Data Analytics (2016) 1:13 Page 26 of 27

28.

29.

30.

31.

32.

33.

34

35.

36.
37.
38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

Hamza H, Belaid Y, Belaid A, Chaudhuri BB. Incremental classification of invoice documents. In: 19th International
Conference on Pattern Recognition (ICPR 2008), December 8-11, 2008, Tampa, Florida, USA. IEEE Computer Society;
2008. p. 1-4.

Lamirel JC, Boulila Z, Ghribi M, Cuxac P. A new incremental growing neural gas algorithm based on clusters
labeling maximization: application to clustering of heterogeneous textual data. In: Proceedings of the 23rd
International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems - Volume
Part Ill. Berlin: Springer-Verlag; 2010. p. 139-48.

GarciA-RodriGuez J, Angelopoulou A, Garcia-Chamizo JM, Psarrou A, Escolano SO, GiméNez VM. Autonomous
growing neural gas for applications with time constraint: optimal parameter estimation. Neural Netw. 2012,32:
196-208.

Pimentel MA, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Signal Process. 2014;99:215-49.
Bouguelia MR, Belaid Y, Belaid A. An adaptive incremental clustering method based on the growing neural gas
algorithm. In: ICPRAM. SciTePress; 2013. p. 42-9.

Ghesmoune M, Azzag H, Lebbah M. G-stream: Growing neural gas over data stream. In: Neural Information
Processing - 21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014. Proceedings, Part
1;2014. p.207-14.

Ghesmoune M, Lebbah M, Azzag H. Clustering over data streams based on growing neural gas. In: Advances in
Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May
19-22, 2015, Proceedings, Part II; 2015. p. 134-45.

Ghesmoune M, Lebbah M, Azzag H. Micro-batching growing neural gas for clustering data streams using spark
streaming. In: INNS Conference on Big Data 2015, San Francisco, CA, USA, 8-10 August 2015. Elsevier; 2015. p.
158-66.

Aggarwal CC, Reddy CK. Data Clustering: Algorithms and Applications, 1st: Chapman & Hall/CRC; 2013.

Zhang T, Ramakrishnan R, Livny M. Birch: An efficient data clustering method for very large databases. In: SIGMOD
Conference. New York: ACM; 1996. p. 103-14.

Udommanetanakit K, Rakthanmanon T, Waiyamai K. E-stream: Evolution-based technique for stream clustering. In:
ADMA; 2007. p.605-15.

Meesuksabai W, Kangkachit T, Waiyamai K. Hue-stream: Evolution-based clustering technique for heterogeneous
data streams with uncertainty. In: Advanced Data Mining and Applications - 7th International Conference, ADMA
2011, Beijing, China, December 17-19, 2011, Proceedings, Part II; 2011. p. 27-40.

Aggarwal CC, Yu PS. A framework for clustering uncertain data streams. In: Proceedings of the 24th International
Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancuin, México; 2008. p. 150-9.

Yang C, Zhou J. Hclustream: A novel approach for clustering evolving heterogeneous data stream. In: Workshops
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong
Kong, China; 2006. p. 682-8.

Guttman A. R-trees: A dynamic index structure for spatial searching. In: SIGMOD'84, Proceedings of Annual Meeting,
Boston, Massachusetts, June 18-21, 1984; 1984. p.47-57.

Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. In: SODA. Philadelphia: Society for Industrial
and Applied Mathematics; 2007. p. 1027-1035.

Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315:2007.

Ailon N, Jaiswal R, Monteleoni C. Streaming k-means approximation. In: NIPS. USA: Curran Associates Inc.; 2009. p.
10-18.

BravermanV, Meyerson A, Ostrovsky R, Roytman A, Shindler M, Tagiku B. Streaming K-means on Well-clusterable
Data. In: Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia:
Society for Industrial and Applied Mathematics; 2011. p. 26-40.

Shindler M, Wong A, Meyerson A. Fast and accurate k-means for large datasets. In: NIPS. USA: Curran Associates Inc,;
2011, p.2375-383.

Aggarwal CC, Han J, Wang J, Yu PS. A framework for projected clustering of high dimensional data streams. In:
(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 -
September 3 2004. VLDB Endowment; 2004. p. 852-63.

Zhou A, Cao F, Qian W, Jin C. Tracking clusters in evolving data streams over sliding windows. Know! Inf Syst.
2008;15(2):181-214.

Isaksson C, Dunham MH, Hahsler M. SOStream: Self organizing density-based clustering over data stream. In:
MLDM. Berlin: Springer Berlin Heidelberg; 2012. p. 264-78.

Wang C, LaiJ, Huang D, Zheng W. SVStream: A support vector-based algorithm for clustering data streams. IEEE
Trans Knowl Data Eng. 2013;25(6):1410-24.

Ben-Hur A, Horn D, Siegelmann HT, Vapnik V. Support vector clustering. J Mach Learn Res. 2001;2:125-37.

Tax DMJ, Duin RPW. Support vector domain description. Pattern Recogn Lett. 1999;20(11-13):1191-9.

Ankerst M, Breunig MM, Kriegel H, Sander J. OPTICS: ordering points to identify the clustering structure. In: SIGMOD
1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA. New York: ACM; 1999. p. 49-60.

Tasoulis DK, Ross GJ, Adams NM. Visualising the cluster structure of data streams. In: Advances in Intelligent Data
Analysis VII, 7th International Symposium on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September 6-8,
2007, Proceedings; 2007. p.81-92.

Hassani M, Spaus P, Gaber MM, Seidl T. Density-based projected clustering of data streams. In: Scalable Uncertainty
Management - 6th International Conference, SUM 2012, Marburg, Germany, September 17-19, 2012. Proceedings;
2012, p.311-24.

Chen'Y, Tu L. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12-15, 2007.
New York: ACM; 2007. p. 133-42.



Ghesmoune et al. Big Data Analytics (2016) 1:13 Page 27 of 27

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.
68.
69.

70.

Wan L, Ng WK, Dang XH, Yu PS, Zhang K. Density-based clustering of data streams at multiple resolutions. TKDD.
2009;3(3):14:1-14:28.

Liu X, Iftikhar N, Xie X. Survey of real-time processing systems for big data. In: 18th International Database
Engineering & Applications Symposium, IDEAS 2014, Porto, Portugal, July 7-9, 2014. New York: ACM; 2014. p. 356-61.
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster computing with working sets. In:
Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud'10. Berkeley, CA, USA:
USENIX Association; 2010. p. 10-10.

Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, Franklin MJ, Shenker S, Stoica I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012.
Berkeley: USENIX Association; 2012. p. 15-28.

Balazinska M, Balakrishnan H, Madden S, Stonebraker M. Fault-c distributed stream processing system. ACM Trans
Database Syst. 2008;33(1):3:1-3:44.

Hwang J, Balazinska M, Rasin A, Cetintemel U, Stonebraker M, Zdonik SB. High-availability algorithms for
distributed stream processing. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
5-8 April 2005, Tokyo, Japan. Washington: IEEE Computer Society; 2005. p. 779-90.

Meng X, Bradley JK, Yavuz B, Sparks ER, Venkataraman'S, Liu D, Freeman J, Tsai DB, Amde M, Owen'S, Xin D, Xin R,
Franklin MJ, Zadeh R, Zaharia M, Talwalkar A. Mllib: Machine learning in apache spark. CoRR. 2015;abs/1505.06807.
Morales GDF, Bifet A. SAMOA: scalable advanced massive online analysis. J Mach Learn Res. 2015;16:149-53.

Krempl G, Zliobaite |, Brzezinski D, Hillermeier E, Last M, Lemaire V, Noack T, Shaker A, Sievi S, Spiliopoulou M,
et al. Open challenges for data stream mining research. ACM SIGKDD explorations newsletter. 2014;16(1):1-10.
Gama J. A survey on learning from data streams: current and future trends. Prog Al. 2012;1(1):45-55.

Gama J. Knowledge Discovery from Data Streams, 1st: Chapman & Hall/CRC; 2010.

Cormode G, Garofalakis MN, Haas PJ, Jermaine C. Synopses for massive data: Samples, histograms, wavelets,
sketches. Found Trends Databases. 2012;4(1-3):1-294.

Marz N, Warren J. Big Data: Principles and Best Practices of Scalable Realtime Data Systems: Manning Publications
Co,; 2015.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

* Convenient online submission

¢ Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Keywords

	Background
	Data stream clustering methods
	GNG based algorithms
	Growing Neural Gas
	GWR
	IGNG
	G-Stream

	Hierarchical stream methods
	BIRCH
	E-Stream
	HUE-Stream
	ClusTree

	Partitioning stream methods
	CluStream
	StreamKM++
	StrAP

	Density-based stream methods
	DenStream
	SOStream
	SVStream

	Grid-based stream methods
	D-Stream

	Summary

	Streaming platforms
	Spark streaming
	Flink
	MOA
	SAMOA

	Open challenges in data stream clustering
	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

