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Abstract
Background: Real world data analysis problems often require nonlinear methods to
get successful prediction. Kernel methods, e.g. Kernelized Principal Component
Analysis, are a common way to get nonlinear properties based on linear representations
in a high-dimensional feature space. Unfortunately, traditional kernel methods are
unscalable for large-size or even medium-size data. On the other hand, randomized
algorithms have been recently proposed to extract nonlinear features in kernel
methods. Compared with exact kernel methods, this family of approaches is capable of
speeding up the training process dramatically, while maintaining acceptable the
classification accuracy. However, these methods fail to engage discriminative features.
This significantly limits their classification accuracy.

Results: In this paper, we propose a scalable and approximate technique called SDRNF
for introducing both nonlinear and discriminative features based on randomized
methods. By combining randomized kernel approximation with a couple of generalized
eigenvector problems, the proposed approach proves both scalable and accurate for
large-scale data.

Conclusion: A series of experiments on two benchmark data sets MNIST and CIFAR-10
reveal that our method is fast and scalable, and also generates better classification
accuracy over other competitive kernel approximation methods.

Keywords: Scalable, Random features, Nonlinear, Discriminative

Background
Working in linear spaces of function has the benefit of facilitating the construction and
analysis of learning algorithms while at the same time allowing large classes of functions
[1]. Particularly, in feature selection or dimensionality transformation, there are many
famous linear models, for instance, Principal Component Analysis (PCA) [2] and Linear
Discriminant Analysis (LDA) [3, 4].
Kernel Principal Component Analysis (KPCA) [5] and Kernel Discriminant Analy-

sis (KDA) [6] are two common methods to enhance the compressed representation of
the data. More specifically, they both utilize the kernel trick to map data into a high-
dimensional Reproducing Kernel Hilbert Space, where a regular linear PCA and LDA is
then performed. However, these two methods are both inefficient and are hard to use
in real applications, especially when the data scale is large. Typically, the computational
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complexity of both KPCA and KDA is of order O(n3), which is obviously not scalable,
when sample number n becomes too large.
To speed up the process of kernel methods, one recent active research focused on

using randomized tricks to build scalable kernel approximation [7–10]. In the context of
classification, these methods first generate nonlinear feature maps fast and then a linear
classifier like Support Vector Machine (SVM) or any large margin linear classifier [11] is
used to predict the result. Onemajor shortcoming of this line ofmethods is that they focus
merely on generating nonlinear representation fast and scalably while paying less atten-
tion on selecting discriminative features. However, as shown in many research proposals,
discriminative features prove highly critical for learning an accurate classifier [12, 13].
Lack in discriminativeness hence limits the system accuracy greatly.
To tackle this problem, we propose in this paper both a scalable and discriminative

solution for kernel feature selection methods. More specifically, we first generate multi-
ple random projections based on a sampling probability function, which is dependent on
the given kernel matrix. Nonlinear features are derived based on these random projec-
tions. A sequence of generalized eigen-problems are then formed to increase the feature
separation ability for each pair of different classes. Since our approach can generate Scal-
able and Discriminative Randomized Nonlinear Features, we name it as SDRNF in short.
The proposed SDRNF approach is appealing in many aspects. (1) Its time complexity is
O(m2n). Herem is a very small number, which is usually far less than n, the number of data
samples. This time complexity is comparable with linear PCA which holds the complex-
ity of O(d2n) (d is the feature dimensionality). (2) A theoretical bound can be derived to
guarantee the excellent approximation between random nonlinear features and the ones
implicitly implied by the kernel matrix. (3) A set of discriminative features could be gen-
erated for each pair of classes, which will significantly benefit the overall accuracy if used
in classification. (4) The proposed framework is simple yet effective, making it very easy
to be used in many applications extensively.
The rest of this paper is organized as follows. In the next section, we introduce the

random projection method to approximate a kernel matrix. Following that, we describe
our model for generating scalable and discriminative nonlinear features. We then show
our results on two benchmark large-scale datasets MNIST and CIFAR-10. We discuss
some important issues after that. Finally, we set out the concluding remarks.

Method
Randomized nonlinear features from kernel matrix

The motivation of randomized methods for kernel-based classification is to map the
input data embedded in the kernel matrix to a nonlinear randomized low-dimensional
feature space. Then any off-the-shelf fast linear methods can be plugged so that a non-
linear classifier w.r.t. the original data features can be derived [7]. These features should
be appropriately designed to guarantee the inner products of the transformed data are
approximately equal to those in the feature space of a specified shift-invariant kernel. In
this paper, we mainly focus on engaging random Fourier features to approximate a kernel,
in particular, the RBF kernel. Some other random features could be also explored [14].
Considering the map z : Rd → Rm, we describe the kernel approximation as follows:

k(x, y) =< φ(x),φ(y) >≈ z(x)′z(y) (1)
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Different from the traditional kernel methods, where φ is usually high-dimensional
or even infinite-dimensional (e.g. in in RBF kernel), the mapping given by z is low-
dimensional. Thus we can simply regard the data implicitly or explicitly embedded in a
nonlinear kernel matrix are nonlinearly transformed to z. Since the feature set z is already
nonlinear, any fast linear classifier can be applied so as to generate an overall non-linear
classifier. Obviously, the nonlinear classifier is given by non-linear features+linear classi-
fier. This is different from original linear features+nonlinear classifiers, but they two could
be considered equivalent in the overall viewpoint.
In the context of classification, we are given a training data set containing n samples

x1, . . . , xn and their corresponding class labels y1, . . . , yn. Informally, the basic task here is
to construct a function f (x) that can best predict its actual label y even when x is a future
data point. Many learning algorithms assume the classifier function as a weighted sum of
certain simpler functions:

f (x) =
∞∑

i=1
αiφ(x; θi) (2)

The parameters of this model are the weights α and the function parameters θ .
The idea behind fandom features is to pick θi randomly in a batch style, and then to solve

α exactly via a simple batch convex optimization. Specially, for RBF kernel we randomly
sample the parameter wi ∈ Rd from a data-independent distribution p(w) and construct
an m-dimensional randomized feature map z(X) for the input data X ∈ Rn×m that obeys
the following structure:

w1, . . . ,wm ∼ p(w)

zi =
[
cos

(
wT
i x1 + bi

)
, . . . ,cos

(
wT
i xn + bi

)]
∈ Rn

z(X) =[ z1 . . . zm]∈ Rn×m (3)

The random Fourier features are constructed by first generating m projections
w1,. . . ,wm from the sampling distribution p(w) that is dependent on the kernel func-
tion. Some examples of popular shift-invariant kernels and the corresponding sampling
distributions can be seen in Table 1. The process is then projecting each example x
to w1,. . . ,wm separately, and then passing them through cosine functions. The mapping
zi(x) = cos

(
w′
ix + bi

)
additionally rotates this circle by a random amount b and projects

the points onto the interval [ 0, 1]. Here b is drawn uniformly from [ 0, 2π ].
Given these randomized fourier features, we could then learn a linear machine f (x) =

aTz(x), e.g., by solving the following optimization problem involved in the linear SVM:

min
a∈Rm

λ

2
||a||22 + 1

n

n∑

i=1
�
(
aTz(xi), yi

)
, (4)

where l is the loss function. Thenwe can use this linearmachine to approximate the kernel
machine.
Although the above randomized process is simple, it is theoretically appealing in that it

could guarantee a close approximation for a given kernel matrix.
Intuitively, since both the probability distribution p(w) and the kernel k(�) are real, the

integral converges when the complex exponentials are replaced with cosines. We could
see this from the following:
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k(x, y) =
∫

Rd
p(w)e−jwT (x−y) dw

≈
m∑

i=1

1
m
e−jwT

i xe−jwT
i ydw

=
m∑

i=1

1
m

cos
(
wT
i x + bi

)
cos

(
wT
i y + bi

)

=<
1√
m
z(x),

1√
m
z(y) > (5)

Consider:

K̃ = 1
m
z(X)z(X)T = 1

m

m∑

i=1
zizTi (6)

As consequence of this theorem , the approximate kernel matrix will eventually approxi-
mate the true one as the number of random features m tends to infinity. In fact, a formal
theoretical bound can be given as follows

E||K̃ − K || ≤
√
3n2 log n

m
+ 2n log n

m
. (7)

Detailed proof of the above error bound can be seen in [15].

Remarks Note that the above error bound is very tight. Since the kernel matrix is of size
n × n, the average bounded error will be

√
3 log n
n2m + 2 log n

mn . when n � m, the average value
will be be close to zero.

Generating discriminative features

In this section, we introduce how to extend the scalable nonlinear features from the pre-
vious section to its discriminative version. We mainly engage the famous Niko′s model
[16] and manage to find the discriminative features by solving a sequence of generalized
eigenproblems. Inspired by the random tricks used in kernel methods, we would find the
transformed discriminative features by maximizing the following quotient:

max
v

Rij(v) = vTKiv
vTKjv

(8)

where the Ki = 1
mz(X)z(X)T is the kernel matrix of the ith class by random methods.

The above objective is trying to maximize the second order information in one class while
minimize another class. This problem is actually a generalized eigenproblem and the vec-
tor v can be easily obtained. In this paper, we would enumerate all the pairs of classes to
form the above quotient. Note that, when the class number becomes large, enumeration
of all the possible class pairs may lead to huge computational load. However, this problem
may be alleviated by choosing only some pairs based on certain criteria. We will discuss
this point later in the next section.
However, the dimension of the kernel matrix is the number of samples in the ith class.

This leads to different size for each kernel matrix due to the different number of samples
in each class. Hence, generalized eigen-problem solutions cannot be applied here. On the
other hand, the time complexity is still O(n3), this would be computationally infeasible.
To solve this problem, we instead use the covariance matrixCi = 1

nz(X)Tz(X) in feature
space Rm. Although it seems to give away the kernel trick, this is reasonable. Note that
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the approximate nonlinear mapping function can be easily obtained by random methods
in our model. Hence it makes it possible to compute the covariance matrix directly. Then
we focus on this quotient:

Rij(v) = vTCiv
vTCjv

(9)

Then in this feature space, the complexity of solving eigen-problems becomesO
(
αm3),

where α is the number of pairwise classes numbers. In addition, the complexity to calcu-
late the covariance matrix is O

(
m2n

)
. The overall complexity of our algorithm becomes

O
(
αm3 + m2n

)
. Since α and m are very small compared with n, the complexity of our

algorithm is O
(
m2n

)
.

On the other hand, the computational complexity is O
(
n3

)
for KPCA, and O

(
d2n

)
for

PCA. In practice, our method is faster than KPCAwhen n becomes large. Moreover, PCA
and our method are both linear in the sample size n, while our method is both nonlin-
ear and discriminative. This presents a great advantage of our method over PCA Our
method can also generatemuchmore number of features than traditional KPCA and PCA
because we solve many generalized eigen-problems between different classes and each of
this problem can give us discriminative features.

Results and discussion
In this section, we evaluate the proposed method of Scalable and Discriminative Ran-
domized Nonlinear Features (SDRNF) in comparison with other competitive methods,
e.g., the famous approach Random Kitchen Sinks (RKS) and Nikos Generalized Eigen-
vectors for Multi-class (GEM). The two benchmark large-scale data sets used are MNIST
and CIFRA-10, which are widely used in the community. Note that, bosth MNIST AND
CIFAR data contain a separate training and test data set. Hence no cross-validation
is needed to report the average result. We will mainly generate our SDRNF features
from RBF kernel functions. However, it should be noted that it is easy and straightfor-
ward to generate similar features from different kernels by choosing different sampling
distributions.
In our experiments, we will first use different methods to generate features. A linear

classifier will then be trained based on these features. We first investigate the classifica-
tion performance when the linear SVM is exploited as the classifier. We then report the
accuracy when a recent popular linear model called CLS [17] to further validate the effec-
tiveness of the proposed approach. All the parameters involved in the experiments were
tuned via cross validation. These parameters include the trade-off constant used in the
linear SVM.

Results

We first report the experimental results on MNIST data in Table 2 when the linear SVM
is used as the final classifier. We intentionally selected different number of approximated

Table 1 Examples of popular shift-invariant kernels and the corresponding sampling distributions
Kernel name k(�) p(w)

Gaussian e

(
− ||�||22

2

)

(2π)− D
2 e

(
− ||w||22

2

)

Laplacian e(−||�||1) ∏
d

1
π(1+w2

d)
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Table 2 Error rate (%) given by linear SVM on MNIST data

Methods 100 200 300 400 500 1000 1500 2000 2500 3000

RKS 13.64 8.55 6.58 5.96 4.79 3.6 3.48 3.10 2.82 2.27

SDRNF 5.35 3.13 2.23 2.22 2.08 1.62 1.61 1.63 1.59 1.55

The first row indicates different number of approximate features from the kernel matrix. The proposed SDRNF clearly outperforms
the other randomized method RKS

features so as to perform a comprehensive investigation between different algorithms. In
this experiment, we mainly compared our proposed SDRNF with another popular ran-
domized method called RKS. As seen in Table 2, our model consistently outperformed
RKS in all the cases of different features. The highest accuracy of our model in MNIST
is 98.45 %, it beats the RKS method which holds 97.73 % accuracy. This is reason-
able since RKS method fails to extract discriminative information while our method can
appropriately select discriminative features.
The situation is also similar on CIFAR data, which is shown in Table 3. In this

table, we also report the error rates when different number of features were generated
by SDRNF and RKS. Also the classifier adopted is the linear SVM. The results again
demonstrated the effectiveness by engaging discriminative features. To clearly visual-
ize the difference between the proposed SDRNF method and RKS, we plot the error
rate curves in Fig. 1. It can be even clearly seen that SDRNF demonstrated a clear
distinction over RKS.
After carefully examining the performance of SDRNF and RKS by using linea SVM in

terms of different feature numbers, we also report in Table 4 the performance of more
competitive models when a recent promising linear model called CLS is used as the clas-
sification model. In particular, we compared our proposed approach with the famous
GEM, RKS, and PCA. For simplicity, we only report the best results achieved by differ-
ent algorithms. Some interesting points are highlighted in the following. First, we note
that SDRNF, GEM, and RKS significantly outperformed PCA, since all these three algo-
rithms could generate non-linear features, while PCA is merely a linear feature selection
method. Secondly, SDRNF ranks the second on MNIST (just slightly lower than GEM)
while it is significantly better than the remaining methods on CIFAR. This shows that
incorporation of discriminative learning into ramdomized non-linear feature selection is
indeed useful. Finally, we should note that the time complexity of SDRNF, GEM, and RKS
are basically in the same order. Hence we do not report the computational time in the
experiments.

Discussion

We discuss some important issues in this section. First, as mentioned in the above, our
model can generate much more features than KPCA and KDA. The experimental results
on the two data sets indicates the effectiveness of our feature. However, when features

Table 3 Error rate (%) given by linear SVM on CIFAR data

Methods 100 200 300 400 500 1000 1500 2000 2500 3000

RKS 64.15 60.45 58.15 57.31 56.31 53.79 52.27 52.21 52.61 51.75

SDRNF 58.94 52.44 51.15 49.29 49.11 45.94 44.02 45.28 45.53 47.19

The first row indicates different number of approximate features from the kernel matrix. The proposed SDRNF clearly outperforms
the other randomized method RKS
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Fig. 1 Test classification error rate comparison on MNIST and CIFAR. Linear SVM was adopted as the classifier

becomes too large, even linear machine will be very slow. The situation is more serious,
especially when the number of classes becomes very large, for instance when k is more
than 100. Hence, we should try to remove redundant features while keep the most dis-
criminative ones. The speedup might be speed up by choosing only a subset of class pairs.
However, this process might not be easy because it is hard to distinguish whether some
class pairs should be removed, even though some heuristics may be available for doing
so. One possible solution is to use parallel methods, since discriminative features can be
generated independently. We will explore this in the future.
Second, although random methods provide us a fast way to generate nonlinear fea-

ture, it often leads to dense feature representation. Even though the original feature is
sparse, random method will still make the nonlinear feature dense. In this case, it will
then incur unnecessary computational cost. Note that, when the feature is denser, even a
linear classifier takes more time for classifying patterns. Hence, a sparse random method
may be helpful, which will further speed up the system speed. Recently, some work has
already been done in this direction [18]. We will explore this property in order to make
our model more powerful.

Conclusion
The main objective in this paper is to investigate scalable methods to extract discrimi-
native and nonlinear features. To this end, we have proposed a scalable and approximate
technique called SDRNF for introducing both nonlinear and discriminative features based
on randomized methods. By combining randomized kernel approximation with a couple
of generalized eigenvector problems, the proposed approach proves both scalable and
accurate for large-scale data. We have done a series of experiments on the benchmark
datasets MNIST and CIFAR-10. Experimental results showed that our method is fast and
scalable, and works remarkably better than other competitive methods. Due to its scalable
and discriminative properties, we believe our model can be used in a variety areas in
machine learning.

Table 4 The lowest classification error rates achieved by different algorithms on the two data sets.
All the methods used the promising CLS [17] linear classifier

SDRNF GEM RKS PCA

MNIST 1.55 1.12 2.27 9.34

CIFAR-10 45.02 59.29 51.75 60.30
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