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University, Curzon Street, used in marketing, commerce, and public sector. This has been raising a natural interest
E'Lm:;g:fgtﬁg formation s within the academic research and industry to develop approaches and solutions for
available at the end of the article ubiquitous sentiment analysis. However, we can observe that most of the academic

research focuses on adopting state-of-the-art machine learning techniques for
sentiment classification and elements of natural language processing for feature
construction and evaluate them on benchmark datasets not regarding much the actual
application settings. In industry the focus is on developing platforms, services and
customized solutions for certain applications and for different domains. In this work we
propose a generic framework for ubiquitous sentiment classification. We discuss the
Rule-Based Emission Model (RBEM) algorithm that we employ for polarity detection.

Results: We show with the experimental results on benchmark datasets and real case
studies that the proposed framework and RBEM approach for polarity detection are
indeed generic and extendable.

Conclusion: As the state-of-the-art machine learning techniques produce black-box
models for sentiment analysis, they are hard to fine-tune, debug and adapt to new
domains. The necessity to collect lots of labeled data from a particular domain is
another obstacle. Therefore, in industry rather simplistic approaches are adopted
resulting potentially in poor accuracy. The proposed framework for sentiment analysis
allows to develop different solutions that are scalable, transparent, and easy to maintain.
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Background

The field of sentiment analysis is given more and more attention of the past few years
[1, 2]. In commercial settings, brand-awareness and online reputation management
(ORM) are crucial factors tightly linked with KPIs that require proper sentiment anal-
ysis to be put in place. In these practical settings however, typical sentiment analysis
approaches are often too simplistic to successfully perform the task at hand or are overly
complex but not transparent. The latter affects the possibility of adapting such sentiment
analysis approaches to a certain domain of interest and results in either poor performance
or high maintenance overhead. There is hence a big need for a low entry-level approach
with high accuracy, easy adaptation and high maintainability!.
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In this work we present a framework for ubiquitous sentiment analysis. The framework
facilitates the development of sentiment analysis tools that are reasonably accurate, have
low maintenance overhead and easy adaptation to new applications. The framework we
provide is designed to develop solutions that are:

e extendable to suit an application’s needs;

® scalable to process large amounts of data, for example originating from social media;

e applicable in a generic setting yet easily adaptable to specific domains or application
areas;

e transparent in their use due to the ease of human-understanding of the rule-based
learners and their models; hence the developed solutions are also more trustworthy
and much easier to improve and maintain;

e portable to run on devices with variations of computational resources including
resource-constrained devices (e.g., smartphones and tablet computers); and

e allowing for fine-grained analysis, e.g. expanding the models and performing
coarse-grained OLAP analysis that is useful for applications such as ORM and brand

monitoring.

We present different use cases to demonstrate these properties. Besides the core
sentiment classification part, we also show data collection and storage methodologies typ-
ically required in applicative settings to provide a fully-working solution rather than the
sentiment analysis is isolation.

At the core of our framework is the polarity detection algorithm called RBEM. This
algorithm is further describes in “Polarity detection with RBEM” section. As pre-
processing steps we performing language identification and part-of-speech tagging. This
three-step approach is our actual working approach for performing sentiment analysis.
Around this working pipeline, we construct data collection and data access interfaces that
can extract data from different source systems in an independent way. Upon completion
of sentiment analysis, the framework allows for persistent storage of the individual results
as well as aggregated results. This way, fine-grained analysis can be performed to eg.
expand the models and coarse-grained OLAP analysis can be performed to gain insights,
the latter being typically interesting for applications such as ORM and brand monitoring.

The rest of the paper is organized as follows. We introduce our framework for ubiqui-
tous sentiment analysis in “Methods” section. In “Polarity detection with RBEM” section
we consider Rule-Based Emission Model (RBEM) heuristics, training and classification
procedures and their accuracy on the constructed bechmarks that we make publicly avail-
able. Five different use-cases taken from real developed solutions used as commercial
services and research prototypes are presented in “Results and discussion” section. We
describe related work in “Related Work” section. “Conclusions” section concludes the

paper.

Methods

Overall processing pipeline

Our sentiment analysis system is implemented as an extendable framework presented in
Fig. 1. This framework allows to crawl and scrape different data sources, mainly focusing
on social media, for data that can serve as input for the sentiment analysis process. The
analysis of the e-mails is implemented as a subsystem separated from the social media
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Fig. 1 A high level overview of the ubiquitous sentiment analysis software framework. Our sentiment
analysis system is implemented as an extendable framework

sources. This is done for pragmatic reasons — people who use mainly e-mail or mainly
social media can use one of the plug-ins. For similar reasons, the SMS interface is also
decoupled from the other data interfaces. As the information retrieved from various social
media, SMS and e-mails differs in format, we use an abstraction layer such that all input
looks the same to our sentiment analysis process.

The sentiment analysis itself in our setting consists of three steps but due to the nature
of the framework, more steps can be added without jeopardizing the other steps. For
example, an emotion classifier — a more elaborate case of sentiment analysis where the
emotion of a message is automatically extracted — can be added as an additional step.
Each of the separate steps of our framework can also be extended, modified or replaced
to suit different purposes. As the output of one step is the input of the other step, there
is no dependency between the actual operational properties of the steps but only on the
input and the output.

We assume language identification and part-of-speech tagging to be untouched by
domain-specificity and hence we do not use domain-specific models or approaches for
those two steps (see e.g. [3] for supporting evidence on language identification). For polar-
ity detection however, we think domain-specificity is a necessity. Consider for example
using the word ‘horrifying’ in the domain of automotive. A ‘horrifying car’ is a nega-
tive sentiment and hence this word indicates it as being such. Considering the domain
of (horror) movies however, we find that this word indicates positivity. To this end we
use a layered approach in constructing and applying the models for polarity detection.
We start with a generic and domain-independent base-model - one per language. This
model is the largest model and contains generic polarity information, for example indicat-
ing that the word good is positive. On top of this base model we define domain-models.
Domain-models overrule base-models when intersecting and are much more specific.
They can contain indicators like the word horrifying for automotive and horror movies
in our example. Finally, we also allow for instance-models. These models are tailored
towards one specific instance, application or usage of the model. In the setting of ORM,
such a model might interpret anything positive about competitors as negative and any-
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thing negative about competitors as positive. Since competitors are specific to a given
brand or entity and overrule domain- and base-models, we keep this information in the
instance-models.

Optimizers are put in place specifically when applying either high-volume senti-
ment analysis or low-resource (e.g. mobile) sentiment analysis. The entire framework
is implemented in the Scala? programming language. The Akka actor framework? is a
framework written in Scala to allow for distributed computing. We use Akka as plat-
form to make our framework work in a distributed setting. Since Scala is implemented
on top of Java, compiling any Scala application will incorporate the Scala library itself
as well as other often unused dependencies, resulting in relatively large file sizes when
applying it to mobile devices. We use ProGuard* to keep the file size to it’s necessary

limit.

Data source management

As shown in Fig. 1, our system contains several kinds of data sources from which we
extract information. For data collection, we decouple two different key aspects. For every
data source we construct an interface that allows us to communicate with the data source,
either through an API (in the case of social media) or through other extraction method-
ologies such as through plugin (in the case of Outlook) or app (mobile) functionalities.
In addition to being able to communicate with the data sources, the nature of each data
source requires us to collect data in different manners. Twitter for example, is best suited
for streaming data collection whereas Facebook and Hyves only support batched retrieval
of data. These differences require us to create a focused information retrieval unit for
every data source system.

For social media, we can retrieve information in different ways. We can collect ran-
dom samples or perform focused queries to find more relevant content. Finding relevant
content can typically be done by searching for keywords, user names/ids or geographical
bounding boxes. Since the way data should be queried for is application independent, our
framework supports all of these query methods, facilitating e.g. ORM using keywords,
analysis of personal correspondence (using user names) or demographical segmentation
(using geographical bounding boxes).

When we analyze personal correspondence (see also “SentiCorr” and “Mobile SentiCorr”
section), we can additionally use Outlook or SMS data. For both these data sources we do
not need to query for specific information since a mobile device or Outlook instance is
assumed to be connected to a specific individual that we are to analyze data for.

Our core three-step sentiment analysis process is designed to be source-system
agnostic. Hence we need a uniform representation of the data we feed into our senti-
ment analysis process. To achieve this, we place a data abstraction layer over all data
sources. In fact, every data source has its own method for abstraction over its data
because the representation of the data may differ per source system. Since our sen-
timent analysis process works on sentence-level, the way we abstract over data is to
chunk every information piece into separate sentences. For social media (especially
Twitter, limited to 140 characters) and SMS this usually means we require no addi-
tional effort. For e-mail however, this means we chunk a single e-mail message into
separate sentences and classify sentence-by-sentence instead of the e-mail message as
a whole.
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OLAP and GUI

Our framework has the ability to forward data to persistent storage. The reason why we do
this is two-fold. First, we want to be able to perform OLAP-style analysis on the results of
our sentiment analysis. Second, in order to create domain-specific or personal - personal
being identical to instance-specific - models, we need to be able to inspect the results and
perform feedback into our models. These two separate processes are catered for by our
OLAP and GUI functionalities.

Sentiment classification
We consider a three-step approach for designing the automated sentiment analysis.
The steps include language identification, part-of-speech tagging and polarity detec-
tion, as shown in the Sentiment Analysis module in Fig. 1. To cater for a multilin-
gual approach, we perform language identification using the LIGA [3] algorithm. We
use language information as a filter, to remove any messages not written in the lan-
guage of interest, and as a pre-processing step to be able to apply language-specific
models in subsequent steps. For POS-tagging we use the TreeTagger, having publicly
available models for different languages [4]. The third and final step is polarity detec-
tion for which we use the RBEM algorithm presented in [5]. We provide a detailed
description of RBEM and discuss its performance in “Polarity detection with RBEM”
section.

This three-step approach is generic in a sense that sentiment analysis can be performed
on any data source. But it is also easily extensible, allowing to include specific knowledge
of the particular source, e.g. Twitter hashtags.

Polarity detection with RBEM

Pattern groups

The rules used in the RBEM algorithm directly stem from nine different pattern groups,
defined as follows.

Positive patterns are positive when taken out of context. English examples hereof
are good, well done®.
Negative patterns are negative when taken out of context, e.g. bad, terrible.
Amplifier patterns strengthen polarity of n entities to their left and right, either
positive or negative, e.g. very much, a lot.
Attenuator patterns weaken polarity of n entities to their left and right, either positive
or negative, e.g. a little, a tiny bit.
Right Flip patterns flip the polarity of n entities to their right, e.g. not, no.
Left Flip patterns flip the polarity of n entities to their left, e.g. but, however.
Continuator patterns continue the emission of polarity, e.g. and, and also.

Stop patterns interrupt the emission of polarity. Stop patterns usually are
punctuation signs such as a dot or an exclamation mark, expressing the
general case that polarity does not cross sentence boundaries.

Neutral patterns do not have any particular meaning but may eliminate the
existence of other patterns in a given context.

The need for positive, negative and negation patterns is evident. The need for continua-
tors and left flips has been indicated in [6]: conjunctive words such as and usually connect
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adjectives of the same polarity whereas conjunctive words such as but usually connect
words of opposing polarity. It is easily seen that certain words strengthen or weaken
polarity, these are covered by the amplifier and attenuator patterns. The stop patterns are
especially useful in determining sentence-based sentiment as these patterns block polar-
ity emission and typically consist of sentence delimiters such as punctuation. The neutral
pattern group does not have a specific logic or rule associated with it but is merely there
to eliminate the presence of other patterns when a neutral pattern subsumes a pattern of
a different pattern group.

Combining these nine pattern groups in an order according to simple rules for set-
ting and removing stops, for emitting positive and negative sentiment, for amplifying and
attenuating sentiment and for right- and left-flipping of the sentiment allows us to define

an emissive model.

Learning RBEM

Each message m of length # is represented as a list m =[ (w1, t1), .., (Wy, t,)] of tuples
of a word w; with its respective POS-tag t;. Upon such a message, patterns can be
defined. A pattern is a list of tuples of words and POS-tags represented as m. Pat-
terns belong to a certain pattern group and hence we represent a pattern g as a tuple
q = (g,p), where g is the pattern group g belongs to, and p is the list of entities com-
prising the actual pattern. In general, each element (w},¢;) of a pattern p consists of a
word w; which is precisely defined and a POS-tag t; which is also precisely defined. As
an exception, elements of p may contain wildcards instead. We consider three types of
wildcards.

e Word wildcards (_, t)): in this case we only consider /. w; can be any arbitrary word.

o Single-position wildcards (_, ): in this case a single entity can be any arbitrary
combination of a single word and a single POS-tag.

® Multi-position wildcards ((x, *): in this case any arbitrary combination of word and

POS-tag pairs of any arbitrary length matches the pattern.

Note that word and single-position wildcards can occur at any position in p. But
multi-position wildcards can only occur in between two elements that are not multi-
position wildcards as co-occurrence of other multi-position wildcards yields another
multi-position wildcard.

Our model now simply consists of a set of patterns per pattern group, represented as
the set Model, containing tuples of groups and patterns; (g, p). All patterns except for the
positive and negative patterns adhere to an action radius £. We set £ = 4 according to
the related experimental results with negation patterns reported in [7]. In general it is
possible that the optimal choice of £ may vary from pattern to pattern and/or from one
language to the other.

Classifying with RBEM

When classifying previously unseen data, we perform two steps. First we collect all pat-
terns in our model that match our sentence. Then, we apply a rule associated with each
pattern group - with exception of the neutral group - for each pattern present in our
message.
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Pattern matching

Each pattern g = (g, p) € Model is matched against our message 1 =[ (w1, t1), .., Wy, tn)]
where p =[ (v1,51), .» Vim> Sm)]. We consider each tuple (w;, t;) and evaluate (v1,81) =azch
(w;, t;) where =40, is defined as follows:

true (D)
ifj > m, define end <« i

false (2)
ifi>n

Vi = Wi ASj =t A (Vir1, $i+1) =match Wit1, bit1) (3)
ifviE_AviExAj<mAj<n

(Vj>$)) =match Wi 8) =1 8j = ti A (Vj+1,8j+1) =match Wit1, tit1) 4)
ifvi=_Asi#E_ANj<mAj<n

(Vj+1,8j+1) =match Wit1, Lit1) (5)
ifViZ_/\SiZ_/\jfm/\jfl’l

(V15 8j+1) =match Wirls tiv1) V (vj,87) =
=match (WH—I; ti+1) (6)
ifvi=xAj<mAj<n

Note that in the definition of =, cases (4), (5) and (6) correspond to the three
different types of wildcards. Moreover, in the evaluation of the first disjunction of (6),
(Vj+1,8741) =match Wit1, tir1), it must hold that vjy1 # * Asj11 # * due to the restriction
we put on the occurrence of multi-position wildcards.

We match all patterns of all groups against every possible element (w;, ¢;) of m. While
doing this, we need to keep track of two positions if a pattern matches; the start position of
the match in m and the end position of the match in m. The starting position is i whereas
the end position is end which is assigned a value in case (1) of =, implying a match
between the pattern and the message. We thus get a set of matching patterns containing
a start position, an end position and a pattern.

matchedPatterns = {(start, end, (g, [ (V1,51) .» Vs 81)1)) | (V1,81) =pmatch Wstares tstart) }

Elements of matchedPatterns may subsume each other. Subsumption in this sense is
defined as follows, where we say that ¢; subsumes ¢, in message m.

3(51,el,ql),(sz,ez,qz)EmatchedPatterns S1<SoAel>e A-(s1=SAel =€) Aq1 F g

All patterns that are subsumed by some other pattern are removed. Note that coinciding
patterns, having the same start position as well as the same end position, are not removed
but as we deal with sets, such coinciding patterns must be of different pattern groups.
Also note that it may be that a pattern containing a wild card may match our sentence
multiple times from the same starting position. As the definition of =, dictates, we
only find and hence maintain the shortest of such matchings. After removing subsumed
patterns, the resulting set maxPatterns only contains maximal patterns and is defined as
follows. Note that this is where the neutral pattern group plays a role. Whenever a neutral
pattern exists in a context that subsumes any other pattern, the neutral pattern is kept
whereas the other pattern is discarded. During the application of rules however, nothing
is done with this neutral pattern, explaining the name of this pattern group.
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maxPatterns = {(s,e,q)|(s, e,q) € matchedPatterns N

’ / / ’ ’
_'(El(s’,e’,q’)ematchedPatterns (s<sne>en-(s=sne=€e)ANgF#q)}

Rule application
After having collected all maximal patterns, we can apply the heuristic rules for each
different pattern group, excluding the neutral pattern group. The rules formally work out
the motivation for the presence of each pattern group. The order in which the rules are
applied is crucial and so is the role of the action radius £. We outline each of the rules
in the order in which they are to be applied. We assume we are given a message m and a
model (Model, £) on which maxPatterns is defined. Every element e; = (w;, ;) € m has a
certain emission value em(e;) which initially is set to 0 for all e; € m.

Rule 1. Setting stops — This rule sets emission boundaries in our message m. It uses
all left flip and stop patterns and sets a stop at the starting position of such a pattern. We
thus get a set of stops:

stops = {s|(s,f, leftflip) € maxPatterns V (s,f,stop) € maxPatterns}

Rule 2. Removing stops — Stops set in the previous step can be removed by continuator
patterns. This however, only happens to the left of a continuator pattern. We thus remove
all stops that occur closest to the left of a continuator pattern, taking £ into account:

stops = stops \ {t|t € stopsA
X (EI(s,f,continuator)emaxPatterns E<sAsS—t<EAN _‘Gt’estops t<t <)}

Rule 3. Positive sentiment emission — A positive pattern can emit positive sentiment
among elements of m. The strength of the emission decays over distance and hence
we need a decaying function. We use e™* as decaying function, where x is the distance
between the positive pattern and an element of m. The choice of the formula e™ is just a
choice made by the authors and is not proven to be the optimal formula. As center for the
emission, we take the floor of the center of the pattern in m, computed by taking the cen-
ter of start and end position. We also need to take all stops into account. For each positive
pattern, we update the emission values em(e;) as follows:

s+f

V(s,f,positive)emaxPatterns C= \‘ J N (Veiem : _‘(Eltestops ic>i=>i<t=<cVi>c

=c<t<i) & em(e) =em(e) + e_i)

Rule 4. Negative sentiment emission — Negative patterns are dealt with in the same
way positive patterns are. The only difference is that our decaying function is now
negative, yielding —e™*. The updating of emission values happens in the same manner:

s+f L .
v(sf,negative)emaxPatterns tC= T A (veiem T (Etestops cz2i1=>1<l=<cVi=zc
= c<t<i) o eme) =eme) + —e )

Rule 5. Amplifying sentiment — Amplifier patterns amplify sentiment emitted either
by positive or negative patterns. Similar to the decaying function used for positive and
negative patterns, amplification diminishes over distance. Moreover, since entities may
already emit sentiment, we use a multiplicative function instead of an additive function.
The function we use is 1 + e~* where x is the distance. Again this formula is just chosen
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by the authors and not proven to be optimal. In contrast to positive and negative patterns,

amplifiers adhere to the action radius £. The emission values are updated as follows:
s+f
2

v(sf,amplifier)emaxPatterns C= \\ J A (Ve;em : (_‘ (Eltestops iczi=ist<cVizc=

c<t<i)AO<|c—i|<€) & em(e;) :em(ei)-(l—l—e_i))

Note the 0 < |c—i| < & clause. This constraint dictates that |c— | is at least 1 in 1 —e~l¢—l
(which is our 1 + e™* function), thus avoiding the case that we multiply by 0 (when we
allow |c — i| = 0, we get 1 — ¢ = 0) and hence completely remove emission values.

Rule 6. Attenuating sentiment — Attenuator patterns perform the reverse of amplifier

patterns and weaken sentiment. To do so, instead of using 1 + e™*, weuse 1 — e™:

s+f
2

V(szf,ampltﬁer)emaxPatterns = L J A (Veiem : (_‘ (Htestaps ic>xisis<t=<cVixc

SCe<t<HA0 < |c—i|<&) & em(e;) = em(e) - (1—e "))

Rule 7. Right flipping sentiment — Right flip patterns simply flip the emission of sen-
timent to their right as follows. If there is a stop at the exact center of our right flip, we
disregard it:

s+
V(s,f,rightﬂip)EmaxPatterns C= 5 A

X (Veiem:(_'(atestopszc<t§ DA|c—il< &) < em(e)) =—em(e;))

Rule 8. Left flipping sentiment — Left flip patterns mirror the effect of right flip
patterns:

2

X (Yerem: (= (Frestops 11 < t<c) Ac—i| <€) < em(e;) = —em(e;))

s+fJA

v(sf,leﬁﬂip)emaxpattems tC= \‘

Once the above rules have been applied in the order given, every element e; of m has
an emission value em(e;). The final polarity of the message is defined by the sum of all
emission values for all elements of m:

n
polarity = Z em(e;)
i=1

Straightforwardly, we say that m is positive (class +) if and only if polarity > 0. Likewise,
we say that m is negative (class —) if and only if polarity < 0. Whenever polarity = 0, we
say that m is neutral (class =).

When looking at the rules, it becomes clear that the order is important. Stops need to be
set first since the other rules depend on stops. Next positive and negative sentiment need
to be defined because amplifying, attenuating and flipping sentiment requires sentiment
beforehand. Next the sentiment is amplified and attenuated based on the positive and
negative emissions defined before. Finally the flips change the direction of the sentiment.

Benchmarking on dataset with verified labels

The first goal of our experiments is to benchmark the performance of the proposed RBEM
comparing it against popular classification approaches for polarity detection. As a sec-
ond goal, we want to evaluate our RBEM method against the current state-of-the-art
Deep Learner. Please note that we do not attempt to show that RBEM is the most accu-
rate method for polarity detection. We conduct experiments to check whether RBEM can
achieve comparable results with existing approaches in term of accuracy, while providing
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a better utility in different application settings. The training set for our polarity detec-
tion algorithm contains messages in multiple languages, multiple sentiments and multiple
domains, stemming from social media. For our training set we use two different retrieval
approaches - a large volume, unsupervised retrieval approach and a lower volume, super-
vised approach involving manual annotation. We use both approaches to obtain both
large volumed data as well as highly accurate data on which it is more likely to find useful
patterns from the polar messages.

The methodology we use to collect large volumes of data covering different sentiments
is similar to [8, 9], in which smileys are used as noisy labels for sentiment and news mes-
sages as noisy indicators of neutral messages. For positive and negative messages we query
Twitter just for 30 minutes searching for content with happy smileys such as :), :-), :D
etc. for another 30 minutes with sad smileys such as :(; :-(; :{( etc.. For neutral messages,
we extract all messages produced by news instances such as the BBC, CNN (English) or
EenVandaag (Dutch). We do this again for 30 minutes.

In addition to collecting training data based on smileys as well as to construct our test
set, we collected random data from Twitter as well and then manually annotated the mes-
sages. We first labeled messages on language and kept only Dutch and English ones. We
next labeled each message on its polarity, being either one of positive, negative or neutral.
Finally, we extracted numerous RBEM patterns from each message.

The labeling of this additional training set and the test has been performed by multiple
annotators, divided into two groups. The first group consisted of three annotators and
focused on extracting Dutch messages only and annotating their polarity only, they did
not identify RBEM patterns as for testing merely a polarity label is required. The second
group consisted of two annotators and focused on extracting English messages only, fol-
lowed by the same process as for Dutch. We use messages for Dutch in which at least two
out of three annotators agreed upon polarity and for English we use messages for which
both annotators agreed upon polarity®.

The constructed benchmark datasets are made publicly available” for reproducibility of
the experimental study and facilitation of further experimentation by other researchers.

The size of the resulting training and test sets is shown in Table 1. The numbers of
patterns present in our RBEM model used in benchmarking are shown in Table 2.

We compare RBEM against other popular approaches used for sentiment classification,
including Prior Polarity Classifier (PPC), Naive Bayes (NB), AdaBoost (AB) with decision
stumps as base classifiers, and Support Vector Machines (SVMs).

We experimented with using four different feature spaces where we use either tokens,
POS tags, a combination of both or patterns. We also experimented with using all features
or the top 2000, 4000 or 8000 features as ranked by mutual information. The resulting

Table 1 The sizes of the training/test sets

Training set/test set size

English Dutch
Positive 3657/205 1402/262
Negative 3491/200 1546/200
Neutral 4802/454 2917/595

Total 11950/859 5865/1057
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Table 2 The number of patterns present in the English and Dutch RBEMs

Pattern type English count Dutch count
Amplifiers 67 53
Attenuators 12 6

Rightflips 39 8
Continuators 10 4

Leftflips 5 2

Negatives 541 364
Positives 308 231

Stops 0 2

accuracies are given in Table 3. Note that instead of exhaustively reporting all possible
feature sets, we only report the best performing feature set for each approach.

The precision and especially recall of the RBEM algorithm are much higher than those
of other approaches. The RBEM algorithm is thus the most favored approach by the
experiments conducted.

To investigate how much we can improve the performance of the RBEM algorithm, we
investigate how much more the accuracy increases when we have more patterns in RBEM.

In approximately six hours of dedicated labeling we found 81 additional patterns. A lin-
guist however would most likely do this much quicker. We mainly label more on positive
and negative patterns as we expect to gain the most with these pattern types. Moreover,
as our Dutch model was relatively small with respect to our English model, we focused
on Dutch patterns. Including additional patterns to RBEM resulted in accuracy increase
from 72.4 to 74.1 %, indicating a quick win in accuracy. Precision and recall increased to
73.3 and 87.6 % correspondingly.

RBEM vs. deep learning

Deep learning utilizing recursive auto-encoders have been recently shown to achieve the
highest accuracy [10, 11] on existing publicly available benchmarks like movie reviews
dataset stemming from Rotten Tomatoes [12] and can be considered as the state-of-the-
art in polarity classification accuracy.

To compare our RBEM method against the recursive auto-encoder, we reproduced
the 10-fold cross-validation results (77.0 % accuracy) reported in [10] for the Rotten
Tomatoes dataset, using their implementation® of the recursive auto-encoder.

As a side note, reproducing results was not so trivial as the predictive accuracy of deep
learner was dropping significantly (to 57 %) with different choices of parameters and/or
number of features used to train the model.

Using the Rotten Tomatoes dataset’, we have to perform a lot of manual labeling to
incorporate the entire training set into a model. We split the training set into a training

Table 3 The overall accuracy (A), precision (P) and recall (R) of polarity detection

Approach A p R

NB - All Tokens 0616 0.551 0.393
SVM - All Patterns 0.637 0.646 0.564
RBEM 0.724 0.719 0.862
PPC - Using SentiWordNet 0.681 0.737 0498

AB - POS-tags - 50 stumps 0.723 0.729 0.691
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set of % of the entire dataset and a test set. We incrementally process data in batches of
20 messages each and extract all patterns we can find from a batch and next evaluate
accuracy on our test set. We do this 62 times and observed a smooth linear increase of the
RBEM predictive accuracy from 30 to 50 %. This contrasts our expectation since typically
a lot of increase is found in the first few iterations and then little increase is obtained in
subsequent iterations. We think the linearity is best explained by the high diversity of the
dataset.

To compare the RBEM model trained on the 620 messages against that of the recur-
sive auto-encoder, we train the auto-encoder on the same 620 messages and evaluate
both models on the remaining rotten tomatoes data. Recursive Auto-Encoder and RBEM
achieve similar accuracies of 59.8 % and 58.2 % correspondingly. This is far from the 77.0 %
accuracy achieved with a larger labeled training set. Nevertheless, the point we make here
is that in the unfavorable settings for RBEM we can still reach comparable results with
the current state of the art.

We also applied the same recursive auto-encoder to the benchmark dataset described
in “Benchmarking on dataset with verified labels” section.

We train a deep learner using the exact same parameters and setup as in the reported
Rotten Tomatoes experiment. Since our datasets contain both English and Dutch sets, we
train a separate model for each language and test them on the corresponding test sets.
The resulting accuracies of the recursive auto-encoder were 40.0 % for English 62.2 % for
Dutch twits.

Observe that these accuracies are significantly lower than RBEM’s accuracies on the
same dataset (Table 3) and other much simpler approaches.

This might be possible to explain by the nature of the data, originating from Twitter,
which could be harder to classify due to improper use of language and grammar, pres-
ence of class imbalance and realistic setting of including positive, negative and neutral
messages.

We also believe that the fine-tuning of the model parameters could give better perfor-
mance, although we could not achieve this easily.

We would like to emphasize once again that with the benchmarking attempts we
performed, we did not aim to show a superiority of RBEM over popular classification
techniques or a state-of-the-art deep learner for sentiment classification. We illustrated
that RBEM provides reasonable and comparable results to other existing well-performing

approaches for polarity detection in terms of accuracy.

Results and discussion

We discuss five case studies coming from a real-life application of (ubiquitous) sentiment
analysis. With these case studies we demonstrate the strengths of the proposed frame-
work and suitability of the RBEM approach for sentiment analysis. The first case study in
“T'V shows buzz monitoring” section is about monitoring the discussions of TV shows on
social media. It demonstrates the ease of portability of the sentiment analysis related data
processing pipeline to a new domain.

The second case study we present (“Emotion tracker” section) is called Emotion Tracker
or Emotiepeiler in Dutch, which is an existing showcase website driven by the framework
we presented in “Methods” section. With this case study we demonstrate that we success-
fully reuse the framework as-is for developing a new application. Besides, the modularity
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of the framework allowed to extend the application with additional functionality without
introducing any changes to the core.

The third case study that we present is called SentiCorr (“SentiCorr” section) that
concerns sentiment analysis of personal correspondence. It mainly focuses on local appli-
cation of our framework with an opportunity to tailor the actual models to a specific
individual’s needs.

The fourth case study (“Mobile SentiCorr” section), similar to SentiCorr but used
on mobile devices, that introduces new challenges and opportunities. With this case
study we intend to demonstrate the portability of our framework to resource-constrained
environments.

We conclude by presenting anvother case study (“Extending RBEM for Emotion
classification” section) that illustrated how RBEM can be extended to handle emotion
classification based on Plutchik’s wheel of emotions [13].

TV shows buzz monitoring

Use of language is highly dependent upon the domain in which it is being used. As such,
it is expected that a generically trained model does not perform as well as it should on
a specific domain and that domain-specific models do not port well to other domains.
In these experiments we show that regardless of whether a concrete instance of RBEM
is domain-agnostic or not, its models are easily adapted to new domains for which no
previously annotated data were available.

We illustrate the adaptability of the RBEM algorithm through a real-life use case in
which it has been applied to a highly specific domain, being the domain of media and par-
ticularly television. We do this by taking the generic base model, its characteristics being
given in Table 2, and adapting it to fit the television domain. This process involves human
interaction, but we show that the adaptation requires little effort of a domain expert.
This is in fierce contrast to general-purpose state-of-the-art classification techniques used
for sentiment classification, including e.g. SVMs, supervised sequence embedding [14]
or deep learning neural networks [15] with which adaptation of models is a nontrivial
labor-intensive process requiring a deep understanding of machine learning.

Experiment setup

To demonstrate the ease of portability to a new domain, we applied the generic model
constructed in “Benchmarking on dataset with verified labels” section to the television
domain in two different use cases. For convenience we name them Experiment 1 and
Experiment 2. The use cases arose from two real-life scenarios in which two different and
non-related Dutch television broadcasters wanted to use our approach for sentiment anal-
ysis on social media with respect to specific television shows, news bulletins or movies
being broadcasted?.

Even though language use may be different in the television domain, it is expected
that language n-gram characteristics as used by the LIGA algorithm hardly change. This
expectation is supported by the experiments conducted in [3] where it is shown that LIGA
generalizes well across domains.

Both experiments were conducted in the same manner and both applied solely to Dutch
messages originating from Twitter.!! For both experiments we initially collected data
starting from 30 minutes before and 2 hours after a television broadcast exactly once. The
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data was collected from Twitter by searching for the keywords given in Table 4. For each
keyword, the amount of messages extracted is also mentioned.

Each of the Dutch messages (as classified by LIGA) is classified with Dutch RBEM as
being positive, neutral or negative. These messages along with their polarity labels have
been handed over to domain experts for judgement with the purpose of identifying com-
mon or drastic patterns that are often misunderstood by the generic RBEM base model.
The domain experts were asked to return messages that they identified as being misclas-
sified by RBEM, give their judgement on what the correct label would be and if possible,
give a brief argument.

We investigated the received feedback to identify common patterns and drastic misin-
terpretations by the RBEM algorithm. These common and drastic patterns directly lead
to modifications of our base model and can either entail removal of present patterns,
addition of new patterns or both.

Generic model refinement

For Experiment 1, the domain experts returned 90 messages in total across all given
keywords that were misclassified according to domain experts. For Experiment 2 only 8
messages were returned. The great difference in the number of messages returned is not
investigated but is most likely to due variance in commitment by the different domain
experts.

Table 5 shows the patterns extracted from the resulting messages that corrected the
greatest amount of misclassified messages. Note that in these experiments, we did not
verify whether these corrections introduce new errors in messages that were not in the
set of messages returned by domain experts.

From Experiment 1, we found that the pattern [ (te, partte), (,adj)] (in English: too ...),
which is a negative pattern in the generic base model, expressing that having too much
of something is often bad, is not always used to express something negative. Removing
this pattern mainly resulted in messages classified as negative before being classified as
neutral or even positive after. The words jammer (in English: pity) and huilen (in English:
crying) are generically associated with negative polarity and hence existed as such in our
generic model. In the television domain however, the Dutch word for pity is often used to

Table 4 The keywords used in the portability experiments and the number of resulting messages.
Note that for Experiment 2, a single message may be included for multiple keywords

Description Keyword # Messages
Experiment 1
TV show Babyboom #tbabyboom 226
Talent shows #tbestezangers 199
TV series Hitch #hitch 305
Real-life show #thtmd 969
TV series House #house 199
Game show!? #ihvh 772
Experiment 2
Soap goede tijden 2465
Soap goedetijden 432
Soap gtst 4013

Venue of soap meerdijk 232
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Table 5 Best scoring patterns found in both experiments

Pattern G O #C
Experiment 1
[ (huilen, verbpressg)] - _ 7
[ (te, partte), ( ad))] - - 3
[ (jammer, verbpressg)] - - 2
[ (jammer, verbpressg), (x, *), + + 1
(afgelopen, verbpapa))
Experiment 2
[ (goede, ad)), (tijden, nounpl)] = +
[ (slechte, ad)), (tiiden, nounpl)] = + )
[ (stotterd, nounsg)] - + 1

G - pattern group (positive +, negative — and neutral =), O - operation (add +, remove -) and #C - number of corrections

indicate that it is a pity a show is over and hence is positive instead of negative. Similarly,
expressing an emotional act of crying often indicates a television broadcasting has high
impact and hence is a positive pattern.

From Experiment 2, the main correction was a straightforward one. The television show
goede tijden, slechte tijden contains the words goede and slechte, indicating positive and
negative sentiment when no context is given. When talking about goede tijden in the con-
text of this specific television show however, it is obvious that this is the name of the show
and hence bears no emotional value. To this end, adding goede tijden (and likewise, slechte
tijden) as a neutral pattern ensures that when this bigger context is given, the positive pat-
tern containing just the word goede is subsumed by this newly introduced neutral pattern
and hence eliminated.

After incorporating new patterns based on the feedback by domain experts, we reduced
the number of misclassifications from 90 to 32 in Experiment 1 and from 8 to 1 in
Experiment 2.

This case study shows that the transparency provided by our framework can help us in
tracing classification errors and correct them, making it more reliable and trustworthy.

Emotion tracker

The Emotion Tracker or Emotiepeiler!3 in Dutch is a Dutch showcase website where sen-
timent around different topics or brands is collected, analyzed and presented in a visual
way. The input for the system originates from Twitter only and is collected by searching
for specific keywords.

The main view of the Emotion Tracker application is shown in Fig. 2. Different top-
ics, brands, individuals and other entities are presented without any additional analysis
information. Every entity can be clicked upon to show a more detailed view where actual
analysis results are shown. Figure 3 shows this detailed view, consisting of three concrete
sections. The left section shows the 10 latest tweets on the topic of interest. A green back-
ground indicates a positive label from our sentiment analysis, a red background indicates
a negative label and a white background indicates neutrality. These tweets are shown in
real-time. The upper-right section shows a gauge that summarizes the current sentiment
level on a scale from 1.0 to 10.0, where a value of 5.0 implies a completely neutral value.
This gauge is reset every hour, on the hour. The lower-left section shows an aggregated
trend-line that summarizes the sentiment scores per hour for the last 48 hours. The tweet
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Fig. 2 Emotion tracker screenshot. The main view of the emotion tracker application

list and the gauge are real-time indicators, whenever a tweet is being posted that contains
the keyword of interest, it will show up with a delay of 10 milliseconds.

Emotion Tracker was developed directly based on the described framework. The main
benefit of doing this is that we could reuse the framework as-is; the only effort introduced
was to create the actual website based on the selected functionality provided by the core
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Fig. 3 Emotion tracker screenshot of the detailed view. The figure shows this detailed view, consisting of
three concrete sections. The left section shows the 10 latest tweets on the topic of interest. A green
background indicates a positive label from our sentiment analysis, a red background indicates a negative
label and a white background indicates neutrality
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modules. Note that we only used the generic base models since the topics and brands
presented on the website cross domains.

Emotion Tracker only focuses on Twitter messages in Dutch. We disabled the other data
sources blocks present in our framework. The first step of the sentiment analysis process,
language identification (using LIGA), served as a filter. At first we had 6 different lan-
guages incorporated into our LIGA models and used a threshold heuristic to filter out any
message not written in any of those 6 languages. It turned out that for certain specific key-
words, a lot of noise was introduced because this keyword existed as a function or highly
often used word in another language similar to Dutch. An example hereof is KPN'4, yield-
ing a lot of Tagalog!® messages returned by Twitter. It turned out that Tagalog oftentimes
resembles Dutch and hence Emotion Tracker also listed a lot of Tagalog messages on KPN.
The LIGA algorithm is strong at disambiguating between messages written in languages
it has knowledge of. We therefore remedied our Tagalog issue by incorporating Tagalog
in our LIGA models. We did this for other languages as well, yielding a LIGA model of 14
known languages in total. Through this, we show the adaptability of our framework.

The name Emotion Tracker hints on actual emotions being tracked. Though polarity
detection can be seen as a superficial form of emotion analysis, no actual emotions are
involved. We are currently expanding Emotion Tracker by adding emotion classification
after our polarity detection step. Due to the nature of our framework, this implies adding a
single building block. This does not affect any of the existing functionalities of our frame-
work and hence we can fully focus on developing the emotion classification in isolation.
This shows the extendability advantage given by our framework.

SentiCorr

SentiCorr is the system for automated sentiment analysis on multilingual user generated
content from various social media and e-mails [16], applied to personal correspondence.
One of the main goals of the system is to make people aware how much positive and
negative content they read and write. The output is summarized into a database allow-
ing for basic OLAP style exploration of the data across basic dimensions including time,
correspondents, read/write and alike.

Figure 4 illustrates one of the ways the information is presented to the user in an inte-
grated view. Social media content and the summary views on the quantities of positive
and negative content read or written over different periods of time are presented via sep-
arate interfaces providing an OLAP-style exploration of the data along the predefined
dimension and allowing to zoom in to the level of the individual messages and zoom out
to the grand total summary of the sentiments.

We also developed an MS Outlook plug-in that analyses the correspondence and high-

116, end-users

lights positive and negative sentences (Fig. 5). Using a locally installed GU
of the SentiCorr system are able to construct a personal instance-model on top of the
generic base-model of the RBEM algorithm by providing relevance feedback.

The current prototype can be used as is for monitoring the statistics collected from the
sentiment analysis of the various texts and their further exploration. At the moment we
have full support for English and Dutch languages in the developed three-step sentiment
analysis process.

Besides the stand-alone use of the developed system, we have integrated SentiCorr

functionality in the so-called Stress Analytics system (early prototype described in [17])
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Fig. 4 A separate GUI interface allows basic exploration of the sentiment summaries along predefined
dimensions and categories within each of the dimensions. E.g. a weekly summary of total (sent and received)
positive, objective and negative content. The figure presents a separate GUI interface allows basic
exploration of the sentiment summaries along predefined dimensions and categories within each of the
dimensions. E.g. a weekly summary of total (sent and received) positive, objective and negative content

by relating the identified sentiments and their summaries with other events potentially
related to the occurrences of stress. Information on such related events is extracted from
stress measuring devices (detecting arousal based on heart rate, voiced speech or galvanic
skin response measurements [18]), voice analysis, calendar data or working agendas, and
analysis of facial expressions captured with a videocamera.
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This case study shows the adaptability of our framework to the application area of
sentiment analysis of personal correspondence. A different solution based on the same
framework has been developed for smartphone setting that we describe next.

Mobile SentiCorr

Mobile data consumption has been in continuous increase since the advent of the
smartphone technology. Moreover, tablet computers have played an important role in
shifting a big proportion of daily data consumption to the mobile handheld devices.
Taking this into consideration, we found that it is an important development to
have a mobile version of SentiCorr. With this use case we illustrate the peculiarities
of performing sentiment analysis of personal communication on different platforms.
Ubiquity of the application allows users to be aware of what the sentiment of the
communication they receive either through personal messages or social media items
anytime, anywhere.

Mobile SentiCorr introduces an application for an Android mobile phone that performs
analysis on the general sentiment of texts received on the mobile devices such that a label
of “objective’, “positive” or “negative” is given to the texts and the information is displayed
in a timeline scenario so the user has an overall view of the general sentiment of the texts
they are sending or receiving on their mobile device (Fig. 6).

We show that the major obstacles when applying sentiment analysis steps in a mobile
scenario are the models that are used in the POS tagging. We experiment with the POS
taggers and various models to determine the parameters under which to utilise different
taggers and with which tagger models. As the selection of the POS tagger affects the
results of the final sentiment analysis, the mobile application is tested on the same data as
the original sentiment analysis system and compared to the original results to determine
the accuracy of the analysis with respect to the SentiCorr system.

During development of the prototype, it was discovered that the original SentiCorr POS
tagger - TreeTagger - could not be used on the Android mobile platform as it was only
available as an executable compiled for the Microsoft Windows or Linux operating sys-
tems. The Android platform is based on a Linux operating system that utilises an ARM
(Advanced RISC Machine) processor, so applications need to be cross-compiled to oper-
ate on the ARM processor. This can only be achieved with the source code which is not
available for TreeTagger. Because of this, other POS taggers were investigated which were
written in Java; two were selected: OpenNLP and the Stanford POS tagger. The same
RBEM method for polarity detection was used.

One of the main concerns was the amount of space required to store the POS tagger
model and the polarity detection model. The largest model was the POS tagger model and
this also took the longest amount of time to load. Loading these models contributed to
how the software was architected. In contrast to SentiCorr, we load our POS and RBEM
models for a single language only, at start-up time. However, provisions have been made
within the software such that it can be extended to include language selection in the
future. The architecture of the Mobile SentiCorr system is compliant with the general
framework shown in Fig. 1.

The Mobile SentiCorr application was installed on three mobile phones with various
specifications. The aim of varying the mobile phones is to conduct stress testing to reveal
the minimum configuration of computational power that is able to run our system. The
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Fig. 6 Mobile SentiCorr screenshot. The figure presents the mobile SentiCorr screenshot

load time of the POS tagger models was the major factor in the duration of the execution
time of the application.

As the sentiment analysis code is implemented as a standard Java library, we were able
to calculate the accuracy of the sentiment analysis for each model on a desktop computer
where the accuracy is taken as the number of correctly tagged tokens divided by the total
number of tokens and represented as a percentage. The sentiment was analyzed on part of
the original data used in the evaluation of SentiCorr and is based on 60 texts and utilizes
the POS tags from the original data and uses this as the gauge for accuracy. These 60 texts
were obtained from Twitter by scraping all public data and manually labelling 20 negative,
20 objective and 20 positive tweets, according to the tweet’s text.

The accuracy of the models ranges from 83 to 90 % across the Stanford and the Open
NLP POS tagger models, with the most accurate being the Stanford English left3 words
and the Stanford wsj-0-18left3words which also had a low load time but only ran on
phones running Android 3.0 and later versions. In most cases, it took nearly ten times as
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long to load the Stanford models as it did with the Open NLP model, for a 2 % increase in
accuracy.

Mobile SentiCorr gives a clear evidence of the extendability, adaptability and potability
properties of our framework. The framework has been extended to suit the application
needs of running in a relatively resource-constrained environment. Flexibility of choosing
the POS tagger according to availability of resources is a unique extension addressing
the need of this specific case study. Also adaptability is evident as the new user interface
better suits the mobile environment, while the generic sentiment analysis process is still
utilised. Portability is probably the most important lesson we learnt. We have been able to
show that tailoring the framework to this environment can make the application portable,
while maintaining the core components of the framework.

Extending RBEM for Emotion classification

This case study illustrates how we can extend our sentiment analysis beyond the typical
granularity of polarity and instead considered eight basic emotions of Plutchik’s wheel of
emotions model [13]. Additionally, Plutchik defines eight human feelings that are deriva-
tives of combinations of two basic emotions. This in fact means that with modeling only
four axes, we can get a total of sixteen dimensions of emotions and feelings. In this
model each of these eight basic emotions (joy, sadness, trust, disgust, fear, anger, sur-
prise, anticipation) are opposites of one of the other basic emotions. This means that we
can in fact measure four axes where opposite emotions exist on the two extremes of a
single axis.

Crucial to the RBEM algorithm is that positivity and negativity are opposites of each
other and hence allow for example negations to simply invert the emission. This spe-
cific characteristic of the algorithm makes it work well with Plutchik’s model since the
emotions defined in that model are also opposites of each other.

We extended the RBEM algorithm to RBEM-Emo [19] to perform the same type of
rules but now — instead of having one axis to measure; positive on one end of the extreme
and negative on the other extreme — we have four different axes, together yielding eight
different emotions being measured. For our RBEM-Emo algorithm, we replace positive
and negative pattern groups with eight new pattern groups, one for each basic emotion of
Plutchik’s model.

As an illustrative example, consider the sentence I thought I would like the new
XYZ phone, but now that I have it, it is a huge disappointment, it makes me angry.
Suppose also that we have the following patterns (Part-of-Speech tags left out for simplic-
ity): (I * like, Anticipation), (but, Leftflip), (huge, Amplifier), (disappointment, Sadness),
(angry, Anger). The algorithm would first assign the emotion scores to all parts of
the sentence where patterns are found. This would vyield the first part emitting neg-
atively on SurpriseAnticipation dimension, the third phrase emitting negatively on
JoySadness and the last phrase emitting negatively on FearAnger. Next, the scores
on pattern indicated by the word huge will amplify the emissions on all axes,
with the biggest effect on JoySadness. Finally, the leftflip indicated by but will con-
vert all negative emissions on its left — influencing SurpriseAnticipation mainly —
to its opposite direction, yielding emissions on Surprise. The final outcome will
hence be that — ordered by decreasing strength — Sadness, Anger and Surprise

are present.
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Experiment setup

We compared RBEM-Emo against SVMs (LibShortText [20]), regression and the recur-
sive auto-encoder of [21]'7 on two benchmarks: the Affect Dataset [22]'® consisting of
snippets of text obtained from books written by three different authors, and the Twitter
dataset which we collected and annotated for this study®.

From the Affect dataset we used only those messages for which both annotators agree
upon emotion. Moreover, since 85 % of all sentences in the dataset are neutral, and
many general purpose classification techniques suffer from class imbalance, we experi-
mented with two different datasets, one where neutral sentences are removed and only
emotion-bearing sentences are maintained and one where neutral messages are included.
For evaluation purposes, we use roughly % of the data for training and % for testing. The
resulting sizes of the training sets are 7527 and 1084 instances depending on the in- or
exclusion of the neutral class, and for test sets — 3590 and 488 instances correspondingly.

For the Twitter Dataset we collected tweets in three different languages: English, Dutch
and German. We had at least two independent annotators to annotate each of these mes-
sages using a dedicated Web-based annotation tool. In case of disagreement, we use the
prevailing emotion label given by the annotators as actual label for a message. If there is
no agreement on the prevailing emotion label, the message was discarded. In addition,
the annotators were asked to identify patterns in these messages such that we can later
on construct the RBEM-Emo model from them. The resulting training/test set sizes are
289/113 for Dutch, 235/113 for English and 225/109 for German.

To ensure we have the right setup of the auto-encoder, we reproduced the polarity
detection experiments on the rotten tomatoes dataset as done in [21] and obtained an
accuracy of 77.0 %. This is in line with the results presented in [21], illustrating our
setup is valid. When we apply our RBEM-Emo classifier, we get four scores for each
axis in Plutchik’s model, summing up to eight emotions. Finally, we assign a single label
corresponding to the highest of all eight emotion scores.

Results

The accuracies of the best performing general purpose classification techniques on the
Affect Dataset are compared to those of RBEM-Emo in Table 6. The majority class clas-
sification accuracy is given as a baseline. We report accuracies both for the case when
neutral messages are kept in our dataset and when they are filtered out. We do this
since the neutral messages compose 85 % of the entire original dataset and it is expected
that generic classification techniques will suffer from class imbalance and learn biases
towards this data rather than find actual emotions. This is reflected in the accuracies of
the SVM and regression classifiers which are marginally higher than the majority class

Table 6 Accuracies on the Affect dataset

Method Acc. w/ Ntl Acc. no Ntl
Majority 84.4 % 37.7 %
SVM, W.C. 86.2 % 61.3%
SVM, TF-IDF 86.2 % 65.0 %
Regr, W.C. 85.8% 59.5%
Regr., TF-IDF 85.5% 634 %
RAE 84.4 % 60.4 %

RBEM-Emo 88.4 % 67.1%
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baseline. Surprisingly, the recursive auto-encoder (RAE) that is currently claimed to be
the state-of-the-art technique for emotion classification performs worse than several sim-
pler classifiers and in fact is as good as a majority class classifier. One possible reason for
this might be that the size of our dataset is relatively small. RBEM-Emo classifier being a
tailor approach to deduce emotional patterns outperforms the other classifiers.

In the second column of Table 6, we report the accuracies when all messages belonging
to the neutral class are removed, yielding a more class-balanced dataset. Here we see
much better improvements over the majority class baseline for SVM and regression and
now also for the recursive auto-encoder. Using TF-IDF scores for features is favored over
using just word counts. The RBEM-Emo method however, still outperforms the other
classifiers.

Table 7 lists the accuracies obtained per language on our own Twitter corpus. For each
classifier, we report the accuracy on each language (being Dutch, English and German)
and report a total accuracy which is the average accuracy over all messages in all three
languages. A generic result over all classifiers is that the accuracies on English data seem
to be the lowest, implying most ambiguity within this language. Remarkable is that the
recursive auto-encoder performs worse than SVM and regression models and yields no
benefit over the majority class guess. Again, this could be due to the small size of the
corpus or difficulty in finding the most suitable model parameters. There is no clear evi-
dence on whether TF-IDF scores or word counts work better for this dataset. However,
the RBEM-Emo classifiers yields the highest accuracy for each of three languages.

Related Work

Polarity detection

Polarity detection has been studied in different communities and in different application
domains. The polarity of adjectives was studied in [6] with the use of different conjunc-
tive words. A comprehensive overview of the performance of different machine leaning
approaches on polarity detection were presented in [23-25]. Typically, polarity detection
is solved using supervised learning methods but more recently attention is being paid to
unsupervised approaches [26].

Some of the recent works suggests the so-called sentic computing for utilizing com-
mon sense knowledge in sentiment analysis. A notable example is [27], in which a
two-level affective common sense reasoning framework is proposed to mimic the inte-
gration of conscious and unconscious reasoning for sentiment analysis using data mining
techniques. Recent related work can be found in [28-30].

Other works are those of [7, 31-33]. In these related works, the authors start from
bootstrapping methods to label subjective patterns. In their latest work, both subjectivity
and polarity detection is performed and evaluated using these patterns along with high
precision rules defined in their earlier works.

Table 7 Accuracies on the Twitter dataset
Language Majority SVMW.C. SVM TF-IDF Regr W.C. Regr TF-IDF RAE RBEM-Emo

nl 504 53.1 549 53.1 53.1 53.1 56.7
en 425 46.0 425 451 425 31.0 47.2
de 349 46.8 47.7 404 46.8 44.0 53.2

all 427 487 484 46.3 475 427 524
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More recently attention is being paid to sentiment analysis on social media. Senti-
ment analysis on Twitter is researched by [8, 34] who use similar methodologies to
construct corpora and analyze Twitter messages to determine their polarity. O’Connor
et al. [35] use opinion mining on Twitter to poll the presidential election of the United
States in 2008 and show how using Twitter opinion time series can be used to predict
future sentiment.

Related research on polarity detection often focuses on using deep learners, modeling
deep linguistic traits. Though such deep learners - for example neural networks or condi-
tional random fields - might be able to capture hidden linguistic traits that are useful for
analysis, understanding the logic underlying resulting models is cumbersome. In addition,
such learners are resource and time intensive and hence do not fit well with applications
where scalability is important.

Platforms for sentiment analysis

To the best of our knowledge, academic work on actual sentiment analysis platforms are
scarce. Work on sentic computing?® provides paradigms for sentiment analysis that can
be used as reference for building a platform, but this is the only such resource we are
aware of.

In contrast to academic platforms, many commercial platforms for sentiment analy-
sis do exist. These platforms typically arise in specific application areas such as webcare
and the broader field of online reputation monitoring. Example vendors of such commer-
cial platforms are DataSift, Radian6 and Coosto?!. The focus of these platforms is more
on specific applications where sentiment analysis is one of the ingredients used to fulfill
needs but since it is not a crucial component of the platform, it usually does not receive
the attention it should and is treated as a black-box solution.

Application of sentiment analysis

Given that core sentiment analysis methodologies are improving and maturing, much
research has been put into the application of sentiment analysis over recent years. Typical
recent application areas review prediction of metrics using sentiment analysis on social
media.

An example of using sentiment analysis in a predictive application can be found in
[36], who studied using sentiment analysis for stock prediction. A commercial approach
of using sentiment analysis for stock prediction can be found in SNTMNT?? who use
sentiment analysis models and approaches tailored towards the financial market and its
jargon.

Another application using sentiment analysis for prediction is found in election fore-
casting. In both [37, 38], the authors studied if and how sentiment analysis results can
be used to predict outcomes of elections. They found that generally such predictions are
competitive with panel-based predictions but typically are ahead by days.

More traditionally, sentiment analysis has been heavily studied on reviews, especially
movie reviews given that benchmark and evaluation resources in this domain are rela-
tively easy to obtain. Example works on applying sentiment analysis to movie reviews
include [39-41].

Though many applications of sentiment analysis have been studied, related work typi-
cally focuses on providing a methodology to only one or two specific application areas at
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once, not focusing on generic application of the proposed method. Little work is done on
generically applicable and flexible sentiment analysis platforms that port well to any given

application area.

Conclusions

Previous academic work in the area of sentiment analysis traditionally focused on
benchmarking performance of sentiment classification techniques, typically for restricted
application settings, e.g. assuming that all messages are written in one language
only, usually English as the resources for English are best available and assum-
ing that labeled data can be collected for the domain of interest in sufficient vol-
umes. Such restrictions limit the direct utility of the developed sentiment analysis
techniques.

In this paper we introduced a generic framework for ubiquitous sentiment analysis. We
presented five different case studies that show its utility. They are witnesses of the ease
with which we can develop solutions based on our generic framework for scenarios of
different nature.

In this paper the main focus was on the data processing pipeline facilitating ubiquitous
sentiment analysis.

In our ongoing work we elaborate on aspects of user interaction with the results of the
sentiment analysis. One of the interesting approaches is to enrich and revise the patterns
used by RBEM. Another and related important aspect is automated monitoring and con-
tinuous improvement of the polarity detection performance. By users we mean not only
marketers or sentiment analysts. If the sentiment analysis is used for personal use (rather
than for marketing needs) as discussed in the SentiCorr and Mobile SentiCorr use cases,
we can expect that lot of input for RBEM will come through a simple relevance feedback

mechanism.

Endnotes

! As the field is still emerging it is hard to find a white paper summarizing objectively the
current state-of-the-art in industry. However, our opinion seems to be shared among the
leading industry experts in sentiment analysis, see e.g. http://www.socialmediaexplorer.
com/social-media-monitoring/sentiment-analysis/

2See http://www.scala-lang.org/ for more information

3 See http://www.akka.io/ for more information

4 See http://proguard.sourceforge.net/ for more information

> Note that patterns can consist of any combination of words and POS-tags.

For the Dutch dataset, the agreement amongst all three annotators is a mere 55 %.
The agreement between two out of three annotators varies from 65 % up to 71 %. The
agreement on the English dataset is 72.1 %.

7 Accessible at http://www.win.tue.nl/~mpechen/projects/smm/#Datasets

8We used the Java version mentioned on http://www.socher.org/index.php/Main/
Semi-SupervisedRecursiveAutoencodersForPredictingSentimentDistributions

°The Rotten Tomatoes dataset only contains positive and negative instances. To rem-
edy for this, whenever RBEM labeled a message as neutral, we assigned it negative class as
the most misclassified class. Note also that the consistency of the labels in this benchmark
has not been studied, and the disagreement of human annotators can be very high.


http://www.socialmediaexplorer.com/social-media-monitoring/sentiment-analysis/
http://www.socialmediaexplorer.com/social-media-monitoring/sentiment-analysis/
http://www.scala-lang.org/
http://www.akka.io/
http://proguard.sourceforge.net/
http://www.win.tue.nl/~mpechen/projects/smm/#Datasets
http://www.socher.org/index.php/Main/Semi-SupervisedRecursiveAutoencodersForPredictingSentimentDistributions
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WSoap Goede tijden, slechte tijden, Talent shows De beste zangers van Nederland, Real-
life show Hotter than my daughter, Game show Ik hou van Holland, other shorter names
are provided in Table 4.

1'\e intentionally focus on demonstrating domain portability rather than multilingual
or source-agnostic aspects; hence the homogeneity of our input data with respect to these
two aspects.

2 Ik hou van Holland

13The application is publicly available at http://www.emotiepeiler.nl/

14 KPN is a Dutch telecom company

15 Tagalog is one of the main languages spoken in the Philippines

16Since we are dealing with personal correspondence, a locally installed GUI is a
necessity to reserve privacy

7 implementation available at https://github.com/sancha/jrae

B http://Irc.cornell.edu/swedish/dataset/affectdata/

1 http://www.win.tue.nl/~mpechen/projects/smm/

20 For references and publicly available information on this paradigm, we refer to http://
www.sentic.net

2 See http://datasift.com, http://salesforcemarketingcloud.com, http://coosto.nl

2 See http://www.sntmnt.com/
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