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A supervised transformation scheme RST is proposed to transform features into lower
dimensional spaces for classification tasks. The proposed algorithm recursively and
selectively transforms the features guided by the output variables.

Results: We compared the classification performance of linear classifier and random
forest classifier on the original data sets, data sets being transformed with RST and data
sets being transformed by principle component analysis and linear discriminant
analysis. On 7 out 8 data sets RST shows superior classification performance with linear
classifiers but less ideal with random forest classifiers.

Conclusions: Our test shows the proposed method's capability to reduce features
dimensions in general classification tasks and preserve useful information using linear
transformations. Some limitations of this method are also pointed out.

Keywords: Machine learning, Feature transformation, Feature selection, Classification,
Subspace learning

Background

In machine learning tasks the intrinsic representations of high-dimensional data may
have much fewer independent variables, as suggested by Hastie [1] in hand written
recognitions, the motion of objects [2], and array signal processing [3]. Most of methods
trying to solve this problem is domain-specific, like in image processing, the learning
of representation often relies on the locality and smoothness assumptions [4]. We are
interested in a generally applicable transformation method to transform feature into

lower dimensions while preserving useful information for classification tasks.

The proposed algorithm reduces the dataset dimensionality by selectively projecting
data points on to the decision plane determined by fitted linear discriminative model. The
algorithm is able to run recursively to make better projections.

Notation
Bold lower-case letters denote vectors, e.g. v, and capital letters for matrices, e.g. M. A
vector v’s L1 and L2 norm are denoted by ||v|| and ||v||2 respectively. The ith row and jth
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column of a matrix M are denoted by m(i) and m; , respectively. We use sample and data
point interchangeably to refer to an observation in the data set.

Classification tasks

Given a dataset X € R"” (m samples and n features) and its corresponding class
y € {c1,...,¢.}™. The classes are ¢; y; is sample X(i)’s ground truth class. Let x be a
row/sample in X, 6 be the model parameters.

A classification task is to construct classifier #(#) : ¥ — y from the seen examples
(X, y) such that for an unseen set of examples X4, #(Xpreq, 0) will be as close as possible
t0 ¥,,04- The modelling process involves minimizing the empirical error between y and
h(X,0), denoted as E(y, h(X, 0)). To avoid & over-fits (X, y), the complexity of % is penal-
ized in terms of its some kind of norm [|/(-)||,. Therefore a classifier can be trained by
solving:

argming E (y, h(X, 0)) + I1h(X, 0)]|, 1)

Support vector machine

Support vector machines (SVM) is a classic classification algorithm. In the case of two-
class classification task (y € {c1,c2}™), it minimizes E(y, h(X,0)) by attempting to place
a hyperplane, f(X) = wX + wy, between data points from class ¢; and cy. The classifier
h(X,req) returns a vector of positive or negative signs to indicate the labels of X,,c4.

h(X) = sign (wX + wp) (2)

The hyperplane, often known as decision plane, is then optimized to maximize it’s min-
imal distance to data points from ¢; and ¢ (also known as the margin). Vapnik showed
that E(y, h(X)) can be minimized by maximizing the margin [5]. A penalizing term C is
used to control the magnitude of the decision plane misplacing a particular sample x; € X
on the other side. The model complexity can be penalized by minimizing w’s L; norm
|lwl| or Ly norm ||w|| [6]

Iwllp

w-X+w0=1+CZ§,' (3)
1

argminy, v,

In the proposed algorithm w are used to indicate the feature’s contribution to a discrim-
inative model. Since w defines the direction of the hyperplane separating two classes of
data points in the » dimensional space, a w; € w(i = 1,...,n) closing to zero indicates
the plane is nearly orthogonal to the i axis. This intuition has been used in Recursive
Feature Elimination [7] method. Figure 1 is a plot of such weights .

Recursive feature elimination
Recursive Feature Elimination (RFE) is a supervised feature ranking and selection tech-
nique. It use a classifier’s feature-related weights as the feature importance metrics, such
w in SVMs or the coefficients in Fischer’s linear discriminator [7, 8].

With a desired numbers of features fixed and number of features s to be removed in
each step, RFE starts by training a classifier on all training samples. Recursively it elimi-
nates features with the s lowest importance until the desired numbers of features has been

reached.
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Fig. 1 Weights from the first label of faces data set Darker color indicates higher importance. Positive
importances is the magnitude of feature’s contribution in classifying this label against the rest, negative is for
the rest against this label

Principle component analysis

Principle Component Analysis (PCA) is a feature transformation method that finds a
sets of orthogonal components that explain the maximum variance out of the samples. It
can also be used to reduce dimensionality of the samples by projecting them to a lower
dimensional space (principle component) [9].

PCA algorithm starts with subtracting the mean of X for all x; € X. Then it com-
putes a covariance matrix w by singular value decomposition. Afterwards it finds
the eigenvectors with k(k < m) greatest eigen value as the orthogonal components. For
a transformation matrix A of size m X k using k eigenvectors. The projection of X to a
k-dimensional space is XA.

Feature extraction with SVM

Tajiri et al. proposed a method based for feature extraction using the weight coefficients
of a learnt linear SVM classifier for binary classification problems [10]. The intuition is
that assume the decision boundary of a linear SVM perfectly discriminates both classes,
then the orthogonal hyper plane of the decision boundary, which is determined by the
weight coefficients, is an ideal projection plane for the data points to be projected on to
embed the discriminative information into the transformed data points.

Recursive Selective Feature Transformation (RST) for classification tasks

Feature importance

w from the linear SVM model can be seen as how much contribution does each of feature
make to form the decision plane.

From a geometric perspective, if w; = 0, the axis of dimension i is then parallel to the
decision plane. Such situation indicates that the decision plane does not split the samples
into two classes in dimension i; in other words, with feature i the SVM model cannot
discriminate the samples.
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If w; = —1 or 1, the axis of dimension i is then orthogonal to the decision plane, which
indicates the only by feature i can the decision plane discriminate the samples. In most
cases w; does not reach — 1 and 1.

Feature importance vector v
In a binary classification setting where |c| = 2, our feature importance vector v € [0, 1]
takes the absolute values of weight vector w € [—1, 1]".

In a multi-class setting |c| > 2, a k-class classification problem is solved by One-versus-
Rest [11] scheme, which is an ensemble of k classifiers with each of them trained by
discriminating training data from ¢; € c against the rest (c/c;). In a k class setting there are
k ws, denoted as W € [—1,1]%*” from all sub classifiers in the ensemble, then v is taken
as the mean vector of absolute values of W.

abs(w), if |[c| =2
v={" @
T Y abs(W (i), iflc| =k > 2

Recursive Selective Feature Transformation (RST)
Consider the hypothetical dataset X has m rows of examples and # columns of features.

We adopted an improved version of the SVM feature extraction method by Tajiri
et al. [10]. In short, Tajiri, et al’s method projects data points on the linear decision plane’s
orthogonal plane. Naturally projecting the data points to a hyper-plane in the feature
space reduces dimensionality by 1, in other words the projected data points have dimen-
sionality of n — 1, thus this approach maintains data points’ inter-class separation while
reduces dimensionality.

Therefore reducing the dimensionality to a much smaller number, say &, requires
data points being projected n — k times, which involves training SVM model n — k
times. Since the approximated time complexity of training a linear SVM model is
O(max(m, nymin(m, n)?) [12], assume data sets normally have much more rows than
columns, that is m >> #, the time complexity of Tajiri, et al’'s method in this scenario is
around O(m(n — k)n?), which is expensive to compute for high dimensional data.

To speed up the dimensionality reduction process, RST uses SVM’s weight vector to
selected top-k important features from the feature importance vector (Eq. 4) to reduce the
weight vector to length k, and project data points onto a k-dimensional feature subspace
determined by the reduced weight vector. Thus k can be used as a parameter to determine
the desired dimensionality. (RST Step 1)

Projecting data points using weights corresponding to those less important features is
not ideal since these features contributed less to form current decision plane. They may
represent redundant or other non-informative information and therefore can normally
be discarded as seen in RFE. A linear decision plane may not generalise on those less
important features, therefore RST performs dimensionality reduction on these features
with RST Step 1. (RST Step 2).

To further improve the transformation quality while reduce the dimensionality, RST
Step 1 and RST Step 2 will run recursively. The time complexity of a combined step of RST
step 1 and 2 is around O(mn?). In implementation we substitute linear SVM [13] for logit
model (12-regularised, stochastic gradient descent solver with hinge loss) on problems
with over 10,000 samples to cope with the potential cache issue of SVM.
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Furthermore, multi-class problem can be difficult for feature extraction based on linear
SVM models. The usual approach dealing with multi-class problem is One-versus-Rest
(OVR) ensemble [11]. Through this approach, a k class problem leads to k decision func-
tions, i.e., kK weight vectors and k corresponding intercepts, each of them represents the
model for each “one class versus the rest of classes” problems. Obviously averaging the
weight vectors, as in the linear models, brings little benefits in terms of generalisation.
In RST the i-th (i €[1,k]) projection matrix is learnt from the i-th weight vectors in
the ensemble. Thus upon training a classifier, the i-th sub-classifier in the OvR ensemble
learns on data set that has been transformed by the i-th projection matrix, see Fig. 2 for
illustration. Upon predicting an unknown sample, RST transforms the sample will be by
the k projection matrices into k transformed samples for the ensemble to predict.

Methods

Evaluation procedures

The experiments runs for 32 iterations. At each iteration the data set is randomly split
with train-test ratio of 3:2. Transformations are learnt by RST, linear discriminant analysis
(LDA) [14] and PCA on the training set, then both of the training and testing set are trans-
formed with the learnt transformer. RST runs for 6 recursions. Transformation learnt
from each recursion were benchmarked. For comparison the number of output features
from PCA and LDA is set the same as the number of dimensions of each transformed
data set by RST. Due to the nature of LDA, the number of features after dimensionality
reduction is strictly less than the number of classes.

The values of data sets has been scaled to [0, 1] without any centering, no missing values
or outliers (within +-1.5 IQR) present. Random forest classier and Linear SVM classifier
with Ly norm penalty and hinge loss is used as the benchmark classifier.

We evaluate the classification performance via multi-class logarithmic loss [15]:

N C
1
logloss = N Z Zyi,c log(pic) (5)

i=1 c=1

where N is the number of samples being tested, C is the number of classes, log is the natu-
ral logarithm, y; . is 1 if observation i is in class ¢ and 0 otherwise, and p; . is the predicted
probability that sample i is in class c. This metric takes into account the uncertainty of the
classifier’s prediction according to how much it varies from the actual class label. That

- class 0 vs rest class 1 vs rest class 2 vs rest
original 4

class 0
class 1
class 2

—4 4

Fig. 2 Example of RST The leftmost plot is the original data set with 3 classes; on its right are 3 transformations
learnt by RST. Each of the classes can be seen separated from the rest of the two classes. The classifier will be
an ensemble of 3 sub classifiers. Upon training a classifier, the i-th sub-classifier in the ensemble learns on data
set that has been transformed by the i-th projection matrix. Upon predicting an unknown sample, the sample
will be transformed by the 3 projection matrices into 3 transformed samples for the ensemble to predict
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is, lower log loss indicates higher confidence that a classifier makes a correct prediction.
Incorrect predictions or uncertain predictions will yield higher log loss.

However naturally linear SVM does not make probabilistic prediction, we obtained it
by calibrating our linear SVM model using Niculescu-Mizil's method [16] via a 3-fold

cross-validation.

Data sets
Eight data sets are used to evaluate the proposed method:

otto group classification [17] (61878 samples, 93 dimensions, 9 classes)

mnist digits recognition [18] (70000 samples, 784 dimensions, 10 classes)

olivetti faces recognition [19] (400 samples, 4096 dimensions, 40 classes)

sonar: rock vs mine sensory readings [20] (207 samples, 60 dimensions, 2 classes)
hand written digits [21] (1797 samples, 64 dimensions, 10 classes)

hand written letter recognition [22] (20000 samples, 16 dimensions, 26 classes)
glass identification [23] (214 samples, 9 dimensions, 6 classes)

®© N o W

iris [24] (150 samples, 4 dimensions, 3 classes)

Results

The comparison of Random Forest and SVM performance on original datasets, linear
discriminate analysis (LDA) transformed data sets, PCA transformed data sets and RST
transformed data sets is in Tables 1 and 2.

Discussion

Among all the transformer (original - no transformation, RST, LDA, PCA) + classifier
(Random Forest, Linear SVM) combinations, SVM combined with RST transformation
has the best classification performance (lowest logarithmic loss) over all other combi-
nations on all the data sets except for sonar and letter. It is noteworthy to mention
that none of the transformations improves the classification performance over the origi-
nal (un-transformed) data set. While on letter data set RST+SVM performs better than
original+SVM by a small margin but being outperformed by original+RandomForest.

Generally RST works better with linear SVM classifiers than with the non-linear Ran-
dom Forest classifiers. With non-linear Random Forest Classifier RST, along with other
two feature transformers even deteriorates the classification performance. This is not sur-
prising since Random Forest’s feature extraction techniques is to use multiple random
feature subspaces, i.e. multiple random splits over features; if the set of extracted fea-
tures are optimised to be useful and compact, its random subspace is surely a less useful
representation.

In most of the cases RST reduces the dimensionality and steadily reduces the log loss
at the same time, up to a point where the log loss stops to decrease or starts to increase.
Therefore in practice is preferable to add a sub set of data to validate the feature trans-
former learnt by RST while training RST so that RST stops learning when not seeing any
improvement over log loss.

Conclusion
The results show that RST is able to extract a fraction of the features from high
dimensional data set that improves the classification performance from our empirical
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Table 1 Cross validated (32 runs of 3:2 train-test split) linear SYM and random forest performance on
original datasets, RST transformed data sets, LDA transformed data sets and PCA transformed data

sets
Original rst Ida pca

No. features Logloss £ stdev  Logloss & stdev  Logloss +stdev  Log loss %+ stdev

Otto group

RandomForest 93 (original) 1.60 +0.03
80 2.12 £ 0.04 1.69 £ 0.03
68 344 £0.08 1.71 £0.03
58 339+ 0.08 1.69 £ 0.02
49 336+ 0.08 1.74 £0.02
41 336£0.15 1.72£003
34 325+0.18 1.74£003
8 2.12 £ 0.06

LinearSVM 93 (original) 0.96 £+ 0.04
80 087 £0.04 0.78 £ 0.01
68 0.77 £ 0.05 0.79 £0.03
58 0.70 + 0.01 0.80 £ 0.03
49 0.70 + 0.01 0.81 £0.02
41 0.70 £ 0.01 0.84 +£0.03
34 0.70 + 0.01 0.88£0.03
8 094 £ 0.02

mnist

RandomForest 784 (original) 0.46 + 0.00
684 1.24 £ 0.04 1.55+£004
597 1.86 £ 0.04 1.50 £ 0.04
454 1.85 £ 0.05 153 +£007
396 1.87 £0.03 146 £0.03
345 1.98 £0.14 1.33 £0.02
288 126 £0.20 129 £0.03
9 1.04 £0.02

LinearSVM 784 (original) 1.85£0.10
684 1.17 £0.06 1.33 £0.05
597 0.60 £ 0.09 133 £0.04
521 068 £0.13 137 £0.11
396 0.71 £0.07 1354007
345 0.55+£0.09 1.30 £ 0.06
288 0.41 + 0.11 137 £007
9 0.52 £0.01

Olivetti faces
RandomForest 4096 (original) ~ 4.29 £ 1.09

720 645+ 0.58 958 + 143
509 3.67 £ 040 824+ 0.38
430 3324053 8.04 £ 0.75
375 3.62+£0.39 8.13 £ 1.05
327 442 £034 729+ 0.52
288 3.96 +£0.83 7.05 +0.83
39 415+£0.26
LinearSVM 4096 (original) ~ 1.98 + 0.04

720 1.21 £ 0.05 151£0.09
509 1.07 £ 0.04 150+ 0.04
430 1.07 = 0.04 1.53+£0.08
375 1.07 = 0.04 1.51 £ 0.05
327 1.07 = 0.04 1.52 £ 0.09
285 1.07 = 0.04 1.52 £ 0.06
39 153 £007

In bold are the best score (lowest log loss) on the corresponding data set. Results for otto group classification, mnist digits
recognition and olivetti faces recognition



Zhao and Guan Big Data Analytics (2017) 2:10

Table 2 Cross validated (32 runs of 3:2 train-test split) linear SYM and random forest performance on
original datasets, RST transformed data sets, LDA transformed data sets and PCA transformed data

sets
Original rst Ida pca

No.features  Logloss & stdev  Logloss £ stdev  Logloss &+ stdev  Log loss & stdev

Sonar

RandomForest 60 (original)  0.49 + 0.04
51 1.174+£0.38 0.77 £0.18
43 483 +142 0.60 +£0.03
36 617 +£1.31 057 +£0.02
30 6.18 +1.98 0.65+0.15
25 578+ 154 064 +£0.15
20 6.03+1.16 0.78 £0.37
1 9234121

LinearSVM 60 (original)  0.52 £0.04
51 0.56 4+ 0.06 0.55 4+ 0.04
43 0824022 0.55 4+ 0.04
36 0.8540.21 0.57 +0.02
30 0.8540.20 0.55 4+ 0.04
25 0.85+0.20 0.55 + 0.04
20 0.85+0.20 0.56 + 0.03
1 1.00£0.18

Digits

RandomForest 64 (original) 046 & 0.07
54 1.00+0.22 0.82 +0.07
46 0924036 0.814+0.17
39 0.98 £+ 0.20 0.73 £ 0.08
33 093 +£0.19 0.74 £ 0.04
27 087 +£0.15 0.614£0.08
22 097 +£0.20 0.59 4+ 0.05
9 061 4+ 0.04

LinearSVM 64 (original)  0.25 £ 0.02
54 0.29 £ 0.01 0.36 £ 0.02
46 024 £0.02 0.38 £ 0.01
39 0.23 + 0.02 0.36 £ 0.03
33 024 £ 0.02 039+ 0.03
27 0.23 + 0.02 0.39 £ 0.01
22 024 £ 0.02 041+ 0.02
9 028 +£0.02

Letter

RandomForest 16 (original) ~ 0.64 £ 0.01
12 278 £0.11 1.36 £ 0.05 1.05 £ 0.02
9 7.17 £0.05 1.61 £ 0.05 1.20 £ 0.03
5 7.08 & 0.05 228 +0.07 1.96 £ 0.06
2 712+0.16 411 £007 498 +0.09

LinearSVYM 16 (original) 133 4+0.01
12 1.33+£0.01 1.62 £ 0.02 145+£0.01
9 1.37 £0.01 1.89 £ 0.02 1.66 £0.01
5 1.33+£0.03 220+ 0.04 2.0540.02
2 1.28 £0.01 2514001 244 4+ 0.01

Glass

RandomForest 9 (original) 2434083
5 433+ 161 3534083 244 4088
2 5.80 & 045 3.82+0.61 3184+ 1.15

LinearSVM 9 (original) 1354+ 0.04
5 123 +£0.04 1204+ 0.03 118+ 0.03
2 1.10 £ 0.04 1224003 121 £0.05

Iris

RandomForest 4 (original) 0.654+0.36
2 0.39 + 0.68 025+ 0.22 028 +0.27

LinearSVYM 4 (original) 0.46 4+ 0.04
2 0.30 + 0.04 043 +£0.02 048 + 0.05

In bold are the best score (lowest log loss) on the corresponding data set. Results for sonar: rock vs mine sensory readings, hand
written digits, hand written letter recognition, glass identification and iris

Page 8 of 10
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experiments. However it is performance is not up to the state-of-art. For instance, in
Otto Group Classification Challenge data set [17], our result is only comparable to the
results from the second quartile, which is typically from gradient boosted tree models
with feature engineering.

It is noteworthy to mention that three major limitations of RST needs further
improvement. Firstly, the process of feature selection via SVM weights is not a smooth
process, thus optimising RST via efficient numeric methods, for instances, stochas-
tic gradient descent, is infeasible. Secondly, RST algorithm essentially stacks multiple
linear transformations. Although fitting data with linear models are fast and effi-
cient, stacked linear transformations are still not capable enough capture the non-
linearity in the feature space. Thirdly, RST embeds discriminative information into
the input space (feature space) from the output space (class labels). If some outputs
(classes) are similar [25] or some samples are mislabelled, RST will make less ideal
transformations.

Abbreviations
LDA: Linear discriminate analysis; RFE: Recursive feature elimination; RST: Recursive selective feature transformation; SVM:
Support vector machine; PCA: Principle component analysis
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