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Abstract
Background: Data preprocessing techniques are devoted to correcting or alleviating
errors in data. Discretization and feature selection are two of the most extended data
preprocessing techniques. Although we can find many proposals for static Big Data
preprocessing, there is little research devoted to the continuous Big Data problem.
Apache Flink is a recent and novel Big Data framework, following the MapReduce
paradigm, focused on distributed stream and batch data processing.
In this paper, we propose a data stream library for Big Data preprocessing, named
DPASF, under Apache Flink. The library is composed of six of the most popular and
widely used data preprocessing algorithms. It contains three algorithms for
discretization, and three algorithms for performing feature selection.

Results: The algorithms have been tested using two Big Data datasets. Experimental
results show that preprocessing can not only reduce the size of the data, but also
maintain or even improve the original accuracy in a short period of time.

Conclusion: DPASF contains algorithms that are useful when dealing with Big Data
data streams. The preprocessing algorithms included in the library are able to tackle Big
Datasets efficiently and to correct imperfections in the data.
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Background
In recent years, the amount of data generated can no longer be treated directly by humans
or manual applications, there is a need to analyze this data automatically and on a large
scale [1]. This is what is know to be Big Data, data generated at high volume, velocity and
variety. This kind of data requires a new high-performance processing and it can currently
be found in many different fields [2].
In order to extract quality information from data, a previous step to learning must be

performed. This is known as data preprocessing [3], this step is almost mandatory in
order to obtain a good model. Data preprocessing [4] deals with missing values, noise,
and redundant features [1, 5] among other factors.
Data streams [6] are sequences of unbounded and ordered data that arrive one at a time.

This imposes restrictions on the learning algorithms which do not appear in static data.
Therefore, new algorithms that can deal with this kind of data must be developed.
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To address the problem of dealing with such a large amount of data in the Big Data
era, distributed frameworks such as Apache Spark [7] and Apache Flink [8, 9] have been
developed. Apache Spark is well known and designed to be a fast and general engine
for large-scale in-memory data processing. Apache Flink focuses, on the other hand, on
distributed streams and batch data processing [10]. Flink is also the only system to incor-
porate a distributed dataflow runtime that exploits streaming pipelined executions for
both stream and batch data processing. It also provides a fault tolerancemechanism, using
a lightweight checkpoint system, which ensures that every data example will be reflected
exactly once [11].
This paper presents the data stream library for Big Data preprocessing named DPASF,

where six data preprocessing algorithms are implemented for Apache Flink, focusing
on the discretization and feature selection problems. The algorithms chosen are those
that have obtained the best performance in the survey carried out in [6]. In this sur-
vey authors summarize, categorize and analyze the most relevant contributions on data
preprocessing that cope with streaming data. The selected algorithms are InfoGain [12],
FCBF [13] and OFS [14] for feature selection and IDA [15], LOFD [16] and PiD [17] for
discretization.
The rest of the paper describes the theoretical background of the algorithms, experi-

mental results and a brief tutorial on how to use them. Source code is available onGitHub1

[18]. The algorithms chosen are the most representative in data streaming preprocessing
and, in addition, have shown positive results.

Big Data

In general, Big Data [19–22] is known to be data that is too big or too complex to handle
with conventional tools and with a single machine. For this reason, there is an increas-
ing need to develop new tools that can handle all this amount of data efficiently. As a
result, distributed frameworks like Hadoop [23], Spark [7] and Flink [8] were developed.
These types of frameworks allow large amounts of data to be processed in a scalable
way.
One common way to define Big Data is to describe it in terms of three dimensions, also

known as the 3 V’s [24] (Volume, Velocity and Variety). Volume just refers to how much
data there is. Velocity refers to the speed at which data is processed and analyzed. Lastly,
Variety refers to how many different data formats there are to be analyzed.

Data Streaming

The main characteristics of streaming data [25] are the following. In streaming data,
instances are not available beforehand, they become available in a sequence fashion, one
by one, or in batches. Instances can arrive quickly and at irregular time intervals. As
streaming data is unbounded, it may be infinite and therefore cannot be stored in mem-
ory. Each instance is accessed usually only once and is then discarded. In order to provide
real-time processing, instances are processed within a limited amount of time. The intrin-
sic characteristics of data are subject to change over time, this is what is know as concept
drift [26].
Concept drift [6] is the main problem within streaming data, as it is important for the

algorithm to detect it and update the learned model to reflect the underlying changes in
the data.
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Data Preprocessing

Before applying any data mining process, it is necessary to adapt the data to the
requirements imposed by each learning algorithm and clean the data properly.
Although data preprocessing is a critical step, it is often time consuming. There are

two types of data preprocessing, those designed to reduce the complexity in the data, and
those designed to prepare the data, this means data transformation, cleaning, normal-
izing etc. The former is called data reduction, the latter data preparation. When these
techniques are applied, the data is in its final stage to be fed to the data mining algorithm.
Among data transformation, feature selection [1, 27] takes care of selecting only rele-

vant and non-redundant attributes. The aim of this type of data preprocessing is to obtain
a subset of the original data that stills maintains the ability to describe the inherent con-
cept. As a side effect, reducing the complexity of the data also results in better efficiency
in terms of the amounts of time to learn a model, as well as preventing over-fitting.
Discretization [15] is a technique that reduces the complexity of the data by dividing the

domain of the variables into bins defined by cut points. This process transforms quan-
titative values into qualitative, as cut points define a set of non-overlapping intervals.
Once the algorithm has computed cut points for each attribute, data is then mapped to
its corresponding interval [1].

Apache Flink

Although Apache Spark and Apache Flink may appear to be similar, they are designed
to address different problems. Apache Spark process all data using a batch approach, it
lacks a true stream processing. Apache Flink fills this gap. Flink provides both kinds of
processing, batch and streaming, except Flink process streaming data as it happens, in an
online fashion. In other words, Spark "emulates" streaming by processing streaming data
in mini-batches, whereas Flink process them online. This makes Flink more efficient in
terms of low latency.
Apache Flink has a fault tolerance system in order to recover from exceptions that may

occur. It is designed to work at low latency even with large amounts of data.

Theoretical description of the algorithms presented
This section presents a theoretical description of the implemented algorithms, as well
as an introduction to feature selection (InfoGain [12], FCBF [13] and OFS [14]) and
discretization (IDA [15], LOFD [16] and PiD [17]).

Feature Selection

Feature selection [28] is meant to reduce the dimensionality of a dataset by removing
irrelevant and redundant features. By doing this, a subset of the original features that still
describes the inherent concept behind the data is returned. FS methods can be divided in
the following categories:

• Wrapper Methods It uses an external evaluator, which depends on a learning
algorithm.

• Filtering Methods It uses selection techniques based on separability measures or
statistical dependencies.

• Embedded Methods It uses a search procedure implicitly embedded in the classifier
or regressor.
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In general, filtering methods tend to achieve better results when generalizing due to
learning independence. In addition, filter methods are more efficient than wrapper meth-
ods, since the latter need to learn a model first. Therefore, in the context of big data,
filtering methods are more widely used. Information Gain [12], OFS [14] and FCBF [13]
are the most popular preprocessing algorithms in this area.

Information Gain

This feature selection scheme, described in [12] is composed of two steps: An incremental
feature ranking method, and an incremental learning algorithm that can consider a subset
of the features during prediction.
For this algorithm, the conditional entropy with respect to the class is computed with

H(X|Y ) = −
∑

j
P(yj)

∑

i
P(xi|yj) log2(P(xi|yj)) (1)

then, the Information Gain (IG) is computed for each attribute with

IG(X|Y ) = H(X) − H(X|Y ) (2)

Once the algorithm has all Information Gain values for each attribute, the top N are
selected as best features.

Online Feature Selection (OFS)

OFS [14] proposes an ε-greedy online feature selection method based on weights
generated by an online classifier (neural networks) which makes a trade-off between
exploration and exploitation of features.
The main idea behind this algorithm is that when a vector x falls withing a L1 ball, most

of its numerical values are concentrated in its largest elements, therefore, removing the
smallest values will result in a small change in the original vector x as measured by the Lq
norm. This way, the classifier is restricted to a L1 ball:

�R =
{
w ∈ Rd : ||w||1 ≤ R

}
(3)

OFS maintains an online classifier wt with at most B nonzero elements. When an
instance (xt , yt) is incorrectly classified, the classifier gets updated through online gra-
dient descent and then it is projected to a L2 ball to delimit the classifier norm. If the
resulting classifier ŵt+1 has more than B nonzero elements, the elements with the largest
absolute value will be kept in ŵt+1.
The above approach presents an inefficiency, even although the classifier consists of B

nonzero elements, full knowledge of the instances is required, that is, each attribute xt
must be measured and computed. As a solution, OFS limit online feature selection to no
more than B attributes of xt

Fast Correlation-Based Filter (FCBF)

FCBF [13] is a multivariate feature selection method where the class relevance and the
dependency between each feature pair are taken into account. Based on information the-
ory, FCBF uses symmetrical uncertainty to calculate dependencies of features and the
class relevance. Starting with the full feature set, FCBF heuristically applies a backward
selection technique with a sequential search strategy to remove irrelevant and redundant
features. The algorithm stops when there are no features left to eliminate.
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The algorithm chooses as a correlation measure the entropy of a variable X, which is
defined as

H(X) = −
∑

i
P(xi) logP(xi) (4)

and the entropy of X after observing values of another variable Y is defined as

H(X|Y ) = −
∑

j
P(yj)

∑

i
P(xi|yj) log2(P(xi|yj)) (5)

where P(xi) is the prior probability for all values of X and P(xi|yj) is the posterior prob-
ability of X given the values of Y . With this information, a measure called Information
Gain can be defined:

IG(X|Y ) = H(X) − H(X|Y ) (6)

According to IG, a feature Y is more correlated to X than to a feature Z if IG(X|Y ) >

IG(Z|Y ).
Now we are ready to define the main measure for FCBF, symmetrical uncertainty [29].

As a pre-requisite, data must be normalized in order to be comparable.

SU(X,Y ) = 2
[

IG(X|Y )

H(X) + H(Y )

]
(7)

SU compensate the bias in IG toward features with more values and normalizes its values
to the range [ 0, 1]. A SU value of 1 indicates total correlation whereas a value of 0 indicates
independence.
The algorithm follows a two step approach, first, it has to decide if a feature is relevant

to the class and two, decide if those features are redundant with respect to each other.
To solve the first step, a user defined SU threshold can be defined. If SUi,c is the SU

value for feature Fi with the class c, the subset S′ of relevant features can be defined with
a threshold δ such that ∀Fi ∈ S′, 1 ≤ i ≤ N , SUi,c ≥ δ.
For the second step, in order to avoid analysis of pairwise correlations between all fea-

tures, a method to decide whether the level of correlation between two features in S′ is
high enough to produce redundancy is needed in order to remove one of them. Examin-
ing the value SUj,i∀Fj ∈ S′(j �= i) allows the level to which Fj is correlated by the rest of
features in S′ to be estimated.
The last piece of the algorithm comprises two definitions:

Definition 1 (Predominant Correlation). The correlation between a feature Fi and the
class C is predominant iff SUi,c ≥ δ and ∀Fj ∈ S′(j �= i)�Fj such that SUj,i ≥ SUi,c
If such feature Fj exists for a feature Fi, it is called a redundant peer of Fi and it is added

to a set SPi identifying all the redundant peers for Fi. SPi is divided into two parts: S+
Pi and

S−
Pi , where S

+
Pi = {Fj|Fj ∈ SPi , SUj,c > SUi,c} and S−

Pi = {Fj|Fj ∈ SPi , SUj,c ≤ SUi,c}

Definition 2 (Predominant Feature). A feature is predominant to the class if its cor-
relation to the class is predominant or can become predominant after removing all its
redundant peers.

According to the above definitions, a feature will be a good feature if it is predomi-
nant in predicting the class. These two definitions along with the following heuristics can
effectively identify predominant features and remove the need of pairwise comparisons.
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Heuristic 1 (when S+
Pi = ∅). Fi is a predominant feature, delete all features in S−

Pi and
stop searching for redundant peers for those features.
Heuristic 2 (when S+

Pi �= ∅). All features in S+
Pi are processed before making decisions in

Fi. If none of them become predominant go to Heuristic 1, or else remove Fi and decide
if features in S−

Pi need to be removed based on other features in S′.
Heuristic 3 (Start point). The algorithm begins examining the feature with the largest

SUi,c, as this feature is always predominant and acts as a starting point for the removal of
redundant features.

Discretization

Broadly speaking, discretization [30] translates quantitative data into qualitative data,
trying to avoid an overlap between the continuous domain of the variable. This process
results in a mapping of a value to a given interval. For this reason, discretization can be
considered as a data reduction process, since it reduces data from a numerical domain to
a subset of categorical values.
More formally, a discretization δ of a numeric attribute Xi is a set of m intervals called

bins. The bins are defined by cut points {k1, . . . , km−1} that divide the domain of Xi intom
bins where b1 = [−∞, k1] , bm = [km−1,∞] and for 1 < i < m, bi = (ki−1, ki]. Therefore,
a discretization for an attribute Xi is a mapping between values v of Xi and its bin indexes
δv = z such that v ∈ bz.
The most popular discretization algorithms are IDA [15], PiD [17] and LOFD [16].

Incremental Discretization Algorithm (IDA)

IDA [15] approximates quantile-based discretization on the entire data stream encoun-
tered to date bymaintaining a random sample of the data which is used to calculate the cut
points. IDA uses the reservoir sampling algorithm to maintain a sample drawn uniformly
at random from the entire stream up until the current time.
In IDA, a random sample is used because it’s not feasible for high-throughput streams to

maintain a complete record of all the values seen so far. The sample method used is called
reservoir sampling [31], and mantains a random sample of s values Vi for each attribute
Xi. The first s values that arrive for each Xi are added to its corresponding Vi. Thereafter,
every time a new instance

〈
xn, yn

〉
arrives, each of its values xin replace a randomly selected

value of the corresponding Vi with probability s/n.
Each value of each attribute is stored in a vector of interval heaps [32]. Vj

i stores the
values for the jth bin of Xi. The reason to use a Interval Heap is that it provides effi-
cient access to minimum and maximum values in the heap and direct access to random
elements within the heap.

Partition Incremental Discretization algorithm (PiD)

PiD [17] performs incremental discretization. The basic idea is to perform the task in
two layers. The first layer receives the sequence of input data and keeps some statistics
on the data using many more intervals than required. Based on the statistics stored by
the first layer, the second layer creates the final discretization. The proposed architecture
processes streaming examples in a single scan, in constant time and space even for infinite
sequences of examples.
PiD [17] performs incremental discretization. The basic idea is to perform the task in

two layers.
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The first layer receives the sequence of input data and the range of the variable and
keeps some statistics on the data using many more intervals than required. The range of
the variable is used to initialize the cut points with the same width. Each time a new value
arrives, this layer is updated in order to compute the corresponding interval for the value.
Each interval has a internal count of the values it has seen so far. When a counter for an
interval reach a threshold, a split process is triggered to generate two new intervals. If the
interval triggering the split process is the last or the first, a new interval with the same
step is created. Otherwise the interval is split in two. In summary, the first layer simplifies
and summarizes the data.
Based on the statistics stored by the first layer, the second layer creates the final dis-

cretization. The proposed architecture processes streaming examples in a single scan,
in constant time and space even for infinite sequences of examples. To do so, this layer
merges the set of intervals computed in the previous layer.
PiD stores the information about the number of examples per class in each interval in

a matrix. In this matrix, columns correspond with the number of intervals and rows with
the number of classes. With this information, the conditional probability of an attribute
belonging to an interval given that the corresponding example belongs to a class can be
computed as P(bi < x ≤ bi+1|Classj).
To perform the actual discretization Recursive entropy discretization [33] is used. This

algorithm was developed by Fayyad and Irani [34]. It uses the class information entropy
of two candidate partitions to select the boundaries for discretization. It begins search-
ing for a single threshold that minimizes the entropy over all possible cut points, then,
it is applied recursively to both partitions. It uses the minimum description length [35]
principle as stop criteria. The algorithm works as follows:
First, the entropy before and after the split is computed as well as its information gain.

Then, the entropy for both left and right splits is computed and finally the algorithm
checks if the split is accepted using the following formula

Gain(A,T ; S) <
log2(N − 1)

N
+ �(A,T ; S)

N
(8)

where N is the number of instances in the set S,

Gain(A,T ; S) = H(S) − H(A,T ; S) (9)

and

�(A,T ; S) = log2
(
3k − 2

)
− [k · H(S) − k1 · H(S1) − k2 · H(S2)] (10)

where ki is the number of class labels represented in the set Si.

Local Online Fusion Discretizer (LOFD)

LOFD [16] is an online, self-adaptive discretizer for streaming classification. It smoothly
adapts its interval limits reducing the negative impact of shifts and analyzes interval
labeling and interaction problems in data streaming. Interaction discretizer-learner is
addressed by providing two similar solutions. The algorithm generates an online and self-
adaptive discretization solution for streaming classification which aims at reducing the
negative impact of fluctuations in evolving intervals.
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The algorithm is composed of two phases, the main process, at instance level, and the
merge/split process, at interval level. The main process works as follows. First, discrete
interval are initialized following the static process defined in [36]. The discretization is
then performed on the first initTh instances. From that moment on, LOFD updates the
scheme of intervals in each iteration and for each attribute. For each new instance, it
retrieves its ceiling interval (implemented as a red-black tree). If the point is above the
upper limit a new interval is generated at that point, making that point the newmaximum
for the current attribute. A merge between the old and the new last interval is evaluated
by computing the quadratic entropy, if the result is lower than the sum of both parts, the
merge is accepted.
Finally, each point is added to a queue with a timestamp to control future removals

in case the histogram overflows. If necessary, LOFD recovers points from the queue in
ascending order and removes them until there is space left in the histogram.
The split/merge phase is triggered each time a boundary point is processed. The new

boundary point splits an interval in two, one interval contains the points in the histogram
with values less than or equal to the new point and keeps the same label. Each time a new
interval is generated, the merge process is triggered for the intervals being divided and
their neighbors.

Implementation
This section presents the distributed design of the six implemented algorithms. For the
implementation of the methods, we have used some basic Flink primitives. Here we
outline those that are more relevant for the algorithms:

• map The Map transformation applies a user-defined map function to each element
of a DataSet

• reduce A Reduce transformation reduces the dataset to a single element using a
user-defined reduce function.

• mapPartitionMapPartition transforms a parallel partition in a single function call.
• reduceGroup A GroupReduce transformation that is applied to a grouped DataSet

calls a user-defined group-reduce function for each group. The difference between
this and Reduce is that the user defined function gets the whole group at once.

Algorithm 1 shows pseudocode for FCBF, the SU value is computed for each
attribute in parallel. All SU values are then filtered according to the threshold param-
eter and then sorted in descending order. With these final sorted values, the FCBF
algorithm is applied as originally described in [13]. Algorithm 2 shows how Sym-
metrical Uncertainty is computed in a distributed fashion. First, each parallel parti-
tion computes the partial counts of each value, then this partial counts are aggre-
gated using a reduce function in order to compute the total counts. With this
information, probabilities for each value are computed and the entropy and mutual
information are calculated. Finally, it returns the corresponding SU value for that
attribute.
Algorithm 3 shows the implementation for Information Gain [12]. First the frequencies

of each value with respect to the class label are computed.With this information, the total
entropy of the dataset is computed. Next, for each attribute, its frequency, probability,
entropy and conditional entropy are computed. Finally, the information gain for the i-th
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Algorithm 1 FCBF Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Input: thr threshold
3: Output: DataSet with the most important features
4: su ←
5: for i ← 0 until nAttrs do
6: attr ←
7: map instance ∈ data
8: (label, featurei)
9: end map

10: yield SU(attr)
11: end for
12: suSorted ← FILTER(su > thr).SORTDESC

13: sBest ← FCBF(suSorted)
14: return sBest

attribute its computed and stored in gains. Algorithm 4 shows how frequencies are
computed.
Algorithm 5 shows the pseudocode for OFS [14], this algorithm maps each label and

feature with their corresponding value for the original OFS algorithm.
Algorithm 6 shows pseudocode for IDA [15]. This algorithm first computes the cut

points for the dataset with the desired number of bins. In order to compute the cut points,
each instance is mapped to the result of IDA, which returns the computed cut points. To
do so, each feature is zipped with its index, and then folded with its corresponding class
label and a zero feature vector that will be filled in each iteration of the fold operation, with

Algorithm 2 Symmetrical Uncertainty function (SU)
1: Input: attr Attribute to comute SU to
2: Output: SU value for attr
3: xypartialCounts ←
4: mapPartition (y, x) ∈ attr
5: xPartialCounts ← COMPUTECOUNTS(x)
6: yPartialCounts ← COMPUTECOUNTS(y)
7: (xPartialCounts, yPartialCounts)
8: end mapPartition
9: totalCounts ← REDUCE(xypartialCounts)

10: su ←
11: map (xcounts, ycounts, x, y) ∈ totalCounts
12: px ← PROB(x)
13: py ← PROB(y)
14: hx ← ENTROPY(x)
15: hy ← ENTROPY(y)
16: mu ← MUTUALINFORMATION(x,y)
17: 2mu

hx+hy
18: end map
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Algorithm 3 InfoGain Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Input: selectNF Number of features to select
3: Output: DataSet with the most selectNF important features
4: freqs ← FREQUENCIES(data, groupBy label)
5: H ← ENTROPY(freqs)
6: gains ←
7: map i ∈ 0 until nFeatures
8: freqs ← FREQUENCIES(data, featurei)
9: px ← PROBS(freqs)

10: H ← ENTROPY(freqs)
11: H(Y |Featurei) ← CONDITIONALENTROPY(freqs)
12: H − H(Y |Featurei)
13: end map
14: return SELECTFEATURES(selectNF, gains)

Algorithm 4 Frequencies function
1: Input: attr attribute to compute frequencies to
2: Input: f function to group by
3: Output: Frequencies for attr using f
4: grouped ← groupBy(data, f )
5: freqs ← reduceGroup(grouped)

6: return freqs

the returned value of the IDA algorithm. Once cut points are stored, line 5 in Algorithm 6
discretizes the data according to those cut points.
Algorithm 7 shows pseudocode for PiD [17], this algorithm first initializes the required

data structures using a map function, this map function expands the dataset and adds it
to a histogram and a count of the total number of instances seen so far. Then this data is
reduced, computing in each reduce step the layers one and two as described in the original

Algorithm 5OFS Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Input: η parameter
3: Input: λ parameter
4: Input: selectNF Number of features to select
5: Output: DataSet with the most selectNF important features
6: finalweights ←
7: map (label, features) ∈ data
8: OFS(label, features)
9: end map
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Algorithm 6 IDA Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Input: bins number of bins
3: Output: Discretized dataset with desired number of bins
4: cuts ←
5: map ((y, x) ∈ data)
6: zipped ← ZIPWITHINDEX(x)
7: FoldLeft((y, emptyfeature))(IDA())
8: end map
9: return DISCRETIZE(data, cuts)

algorithm [17]. Once this reduce stage has been completed, it returns the discretized data
using the previously computed cut points.
Algorithm 8 shows pseudocode for LOFD [16]. This algorithm first instantiates a

LOFD helper, and maps the data according to the computed cut points this helper
returns. Once all cutpoints have been collected, the reduce function extracts only the
most recently computed cut points and applies discretization based on those same cut
points.

Results
This section presents in detail the six algorithms implemented in Apache Flink, there are
three algorithms for feature selection and three for discretization.

Examples

The software has been implemented in the Scala programming language2. As mentioned
above, DPASF consists of six algorithms for data streams, three discretization methods
and three feature selection methods. The software can be found on GitHub3. The next
section presents how to use each algorithm in Apache Flink.

Algorithm 7 PiD Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Input: α parameter
3: Input: step parameter
4: Output: Discretized dataset
5: cuts ←
6: map instance ∈ data
7: (instance,Histogram, 1)
8: end map
9: reduce (m1,m2) ∈ cuts

10: UPDATELAYER1(m1, m2)
11: UPDATELAYER2(m1, m2)
12: end reduce
13: return DISCRETIZE(data, cuts)
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Algorithm 8 LOFD Algorithm
1: Input: data a DataSet LabeledVector (label, features)
2: Output: Discretized dataset
3: lofd ← LOFDInstance
4: cuts ←
5: map x ∈ data
6: discretized ← lofd.applyDiscretization(x)
7: for s in 0 until discretized.size do
8: lofd.getCutpoints(s)
9: end for

10: end map
11: reduce (_, b) ∈ cuts
12: b
13: end reduce
14: return DISCRETIZE(data, cuts)

Usage

Feature Selection

FCBF In order to benefit from the Apache Flink framework, symmetrical uncertainty
computations for each pair of attributes are distributed across each node in order to speed
up the process.
Suppose the data set to be used is the Abalone DataSet4, load it into Apache Flink:

Then, a FCBFTransformermust be instantiated, configure its parameters and finally
define a pipeline:

After fitting the algorithm, calling transform on fcbf will return the Abalone data
set with the most important features.

InfoGain For this algorithm, each attribute’s Information Gain value is computed in
parallel.
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The use of InfoGainTransformer is similar:

OFS One difference of OFS with respect to the previous algorithms is that it does not
require a fitting phase:

Discretization

In this section the usage of the discretization methods is presented. The Iris5 DataSet was
used, loaded as:

IDA For IDA, cut points are computed in parallel, in order to get the most recent
computed cut point, data is reduced to get the latest set of cuts.

PiD For PiD, the histogram required is shared across all nodes. After the histogram is
initialized, data is reduced in order to produce the final histogram, where the cut points
required to perform the discretization are found.
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Table 1 Information about DataSets for experiments

DataSet Instances Attributes Classes

ht_sensor 929000 11 3

skin_nonskin 245000 3 2

In PiD, data must be normalized in the previous step, so a ChainTransformer is
used in the pipeline.

LOFD For LOFD, a PiD-like approach is used. First, all features are mapped in order to
extract the necessary information from them, then, data is reduced to extract the final cut
points to perform discretization.

Results

The experimental set up has used two datasets, ht_sensor and skin_nonskin, and are
described in Table 1.
All algorithms have been tested with KNN and Decision Trees using 5-fold cross vali-

dation. A baseline is fitted without any preprocessing steps, and another is fitted with the
corresponding preprocessing algorithm. In addiction KNN has been fitted with k = 3 and
k = 5.
All the feature selection methods have been set up to select 50% of the features.
Table 2 shows the amount of time it took to preprocess the data. The worst algorithm

by far is IDA, which took about 5 h to finish for ht_sensor. On the contrary, the fastest
was InfoGain. OFS could not be measured as it only accepts binary datasets. It is worth
mentioning that these experiments could not have been possible in normal environments
due to the amount of time they would have taken.

Table 2 Times in seconds

Preprocessing algorithm ht_sensor skin_nonskin

FCBF 19 1

OFS - 1

InfoGain 16 2

IDA 20854 93

LOFD 28 3

PiD 118 7
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Table 3 Accuracy for KNN with k = 3

k = 3 ht_sensor skin_nonskin

Baseline 0.9998 0.9995

FCBF 0.8965 0.8642

OFS - 0.8985

InfoGain 0.9999 0.9825

IDA 0.8845 0.6591

LOFD 0.9662 0.9755

PiD 0.9999 0.9966

The best results are in bold

For all experiments we have used a cluster composed of 14 computing nodes. The
nodes hold the following characteristics: 2 x Intel Core i7-4930K, 6 cores each, 3.40 GHz,
12 MB cache, 4 TB HDD, 64 GB RAM. Regarding software, we have used the follow-
ing configuration: Apache Flink 1.6.0, 238 TaskManagers (17 TaskManagers/core), 49 GB
RAM/node.
Tables 3 and 4 show the accuracy obtained by the algoritms, as well as the accu-

racy without any preprocessing. The three feature selection methods obtain considerable
results, even when they are configured to remove half the features on the datasets. FCBF
is not among the best, but it is among the fastest. This may be due to the fact that it avoids
computing pairwise comparisons when selecting features. Also, FCBF can not be set to
select a fixed number of features, it uses a threshold to select features based on its SU
value, so in some cases it will select less than half the features. InfoGain also gives excel-
lent results, close to the baseline and even improves when k=3. Among the discretizers,
PiD outperforms baseline in all cases except for skin-nonskin with k=3.
Table 5 shows accuracy for a Decision Tree model, results are consistent with the previ-

ous model. In general, feature selection methods result in a decrease in accuracy whereas
discretization methods are consistent with baseline, albeit PiD improves accuracy.

Conclusions
In this paper we have tackled the Big Data stream preprocessing problem. We have cre-
ated a library for Big Data data stream preprocessing called DPASF that is implemented
in the Big Data streaming framework Apache Flink. This library includes six popular data
preprocessing algorithms. Three of the algorithms are focused on discretization, while the
other three are focused on feature selection tasks. All the algorithms have been redesigned
for the map reduce framework so they can cope with Big Data datasets.
The performance of the six algorithms in Big Data scenarios has been analyzed using

two Big Data datasets. Experimental results have shown that preprocessing can improve

Table 4 Accuracy for KNN with k = 5

k = 5 ht_sensor skin_nonskin

Baseline 0.9999 0.9994

FCBF 0.8037 0.8684

OFS - 0.9006

InfoGain 0.9991 0.9838

IDA 0.8850 0.7092

LOFD 0.9665 0.9766

PiD 0.9999 0.9994

The best results are in bold
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Table 5 Accuracy for Decision Trees

DT ht_sensor skin_nonskin

Baseline 70.13 98.45

FCBF 57.50 88.00

OFS - 88.15

InfoGain 67.51 97.10

IDA 68.35 94.24

LOFD 69.85 94.18

PiD 71.06 98.74

The best results are in bold

the original accuracy in a short amount of time. We have also observed that choosing the
right technique is crucial depending on the problem and the classifier used.

Endnotes
1 https://github.com/elbaulp/dpasf
2 https://scala-lang.org/
3 https://github.com/elbaulp/DPASF
4 https://archive.ics.uci.edu/ml/datasets/Abalone
5 https://archive.ics.uci.edu/ml/datasets/Iris/
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6. Ramírez-Gallego S, Krawczyk B, García S, Woźniak M, Herrera F. A survey on data preprocessing for data stream

mining: Current status and future directions. Neurocomputing. 2017;239:39–57.
7. Spark A. Apache Spark: lightning-fast cluster computing. http://spark.apache.org.
8. Flink A. Apache Flink. http://flink.apache.org.
9. Friedman B. Introduction to Apache Flink : Stream Processing for Real Time and Beyond. Sebastopol, CA: O’Reilly

Media; 2016.
10. García-Gil D, Ramírez-Gallego S, García S, Herrera F. A comparison on scalability for batch big data processing on

apache spark and apache flink. Big Data Analytics. 2017;2(1):1.
11. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache flink : Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. 2015;36(4):28–38.
QC 20161222.

12. Katakis I, Tsoumakas G, Vlahavas I. On the utility of incremental feature selection for the classification of textual data
streams. In: Bozanis P, Houstis EN, editors. Advances in Informatics. Berlin, Heidelberg: Springer; 2005. p. 338–348.

13. Yu L, Liu H. Feature selection for high-dimensional data: A fast correlation-based filter solution. 2003. p. 856–863.
14. Wang J, Zhao P, Hoi SCH, Jin R. Online feature selection and its applications. IEEE Transactions on Knowledge and

Data Engineering. 2014;26(3):698–710.
15. Webb GI. Contrary to popular belief incremental discretization can be sound, computationally efficient and

extremely useful for streaming data. In: Proceedings of the 2014 IEEE International Conference on Data Mining.
ICDM ’14. Washington, DC: IEEE Computer Society; 2014. p. 1031–1036. URL https://doi.org/10.1109/ICDM.2014.123.

16. Ramírez-Gallego S, García S, Herrera F. Online entropy-based discretization for data streaming classification. Future
Generation Computer Systems. 2018;86:59–70.

17. Pinto C. Discretization from data streams: applications to histograms and data mining. In: In Proceedings of the 2006
ACM Symposium on Applied Computing (SAC’06; 2006. p. 662–667.

18. Alcalde A. elbaulp/DPASF: 0.1.1 release. 2018. https://doi.org/10.5281/zenodo.1451506.
19. Landset S, Khoshgoftaar TM, Richter AN, Hasanin T. A survey of open source tools for machine learning with big

data in the hadoop ecosystem. Journal of Big Data. 2015;2(1):24.
20. Rao TR, Mitra P, Bhatt R, Goswami A. The big data system, components, tools, and technologies: a survey.

Knowledge and Information Systems. 2018. https://doi.org/10.1007/s10115-018-1248-0.
21. Ramírez-Gallego S, Fernández A, García S, Chen M, Herrera F. Big Data: Tutorial and guidelines on information and

process fusion for analytics algorithms with MapReduce. Information Fusion. 2018;42:51–61.
22. García-Gil D, Ramírez-Gallego S, García S, Herrera F. Principal Components Analysis Random Discretization

Ensemble for Big Data. Knowledge-Based Systems. 2018;150:166–174.
23. Apache Hadoop. https://hadoop.apache.org/.
24. Laney D. 3D Data Management: Controlling Data Volume, Velocity, and Variety: META Group; 2001. https://www.

bibsonomy.org/bibtex/263868097d6e1998de3d88fcbb7670ca6/sb3000.
25. Gama J. Learning from Data Streams : Processing Techniques in Sensor Networks. Berlin New York: Springer; 2007.
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