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Abstract

Background: Data-based modeling is becoming practical in predicting outcomes. In
the era of big data, two practically conflicting challenges are eminent: (1) the prior
knowledge on the subject is largely insufficient; (2) computation and storage cost of
big data is unaffordable.

Results: To improve accuracy and speed of regressions and classifications, we
present a data-based prediction method, Random Bits Regression (RBR). This method
first generates a large number of random binary intermediate/derived features based
on the original input matrix, and then performs regularized linear/logistic regression
on those intermediate/derived features to predict the outcome. Benchmark analyses
on a simulated dataset, UCI machine learning repository datasets and a GWAS dataset
showed that RBR outperforms other popular methods in accuracy and robustness.

Conclusions: RBR (available on https://sourceforge.net/projects/rbr/) is very fast and
requires reasonable memories, therefore, provides a strong, robust and fast predictor in
the big data era.
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Background
Data-based modeling is becoming practical in predicting outcomes. We are interested

in a general data-based prediction task: given a training data matrix (TrX), a training

outcome vector (TrY) and a test data matrix (TeX), predict test outcome vector (Ŷ). In

the era of big data, two practically conflicting challenges are eminent: (1) the prior

knowledge on the subject (also known as domain specific knowledge) is largely insuffi-

cient; (2) computation and storage cost of big data is unaffordable. In the literature of

large-scale visual recognition [1, 2], convolutional neural networks (CNN) have shown

outstanding image classification performance using ‘domain specific knowledge’.

To meet these aforementioned challenges, this paper is devoted to modeling large

number of observations without domain specific knowledge, using regression and clas-

sification. The methods widely used for regression and classification can be classified

as: linear regression, k nearest neighbor(KNN) [3], support vector machine (SVM) [4],

neural network (NN) [5, 6], extreme learning machine (ELM) [7], deep learning (DL)

[8], random forest (RF) [9] and generalized boosted regression models (GBM) [10]

among others. Each method performs well on some types of datasets but has its own
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limitations on others [11–14]. A method with reasonable performance on boarder, if

not universe, datasets is highly desired.

Some prediction approaches (SVM, NN, ELM and DL) share a common characteris-

tics: employing intermediate features. SVM employs fixed kernels as intermediate fea-

tures centered at each sample. NN and DL learn and tune sigmoid intermediate

features. ELM uses a small number (<500) of randomly generated features. Despite

their successes, each has its own drawbacks: SVM kernel and its parameters need to be

tuned by the user, and the requirement for memory is large: O(sample2). NN and DL’s

features are learnt and tuned iteratively which is computationally expensive. The num-

ber of ELM’s features is usually too small for complex tasks. These drawbacks limit

their applicabilities on complex tasks, especially when the data is big.

In this report, we propose a novel strategy to take advantage of large number of inter-

mediate features following Cover’s theorem [15], which is named Random Bits Regres-

sion (RBR). Cover’s theorem is one of the primary theoretical motivations for the use of

non-linear kernel methods in machine learning applications, and it states that given a

set of training data that is not linearly separable, one can transform it into a training

set that is linearly separable (with high probability) by projecting it into a higher-

dimensional space via non-linear transformation [16]. We first generate a huge number

of (104 ~ 106) random intermediate features given TrX, and then utilize TrY to select

predictive intermediate features by regularized linear/logistic regression. The regular-

ized linear/logistic regression techniques are used to avoid overfitting in modeling

[17, 18]. In order to keep the memory footprint small and compute quickly when

employing such huge number of intermediate features, we restrict these features to

be binary.

Methods
Data pre-processing

Suppose that there are m ariables x1,…,xm as predictors. The data are divided into two

parts: training dataset and test dataset. The algorithm takes three input files: TrX, TeX

and TrY. TrX and TeX are predictor matrices for the training and test datasets, re-

spectively. Each row represents a sample and each column represents a variable. TrY is

a target vector or a response vector, which can have a real valued or binary. We

standardize (subtract the mean and divide by the standard deviation) TrX and TeX to

ease subsequent processing.

Intermediate feature generation

We generate 104 ~ 106 random binary intermediate features for each sample. Let K be

the number of features to be generated and F ¼
f 11 ⋯ f 1K
⋮ ⋮ ⋮

f n1 ⋯ f nK

2
64

3
75 be the feature

matrix where fij is the jth intermediate feature of the ith sample. The kth intermediate

feature vector fk = [f1k,…, fnk]
T is generated as follows:

(1)Randomly select a small subset of variables, e.g. x1, x3, x6.

(2)Randomly assign weights to each selected variables. The weights are sampled from

standard normal distribution, for example, w1, w3, w6 ~ N(0,1)
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(3)Obtain the weighted sum for each sample, for example zi =w1x1i +w3x3i + w6x6i for

the ith sample.

(4)Randomly pick one zi from the n generated zi, i = 1,…, n as the threshold T.

(5)Assign bits values to fk according to the threshold T, f ik ¼
1; zi≥T
0; zi < T

�
, i = 1,…, n.

The process is repeated K times. The first feature is fixed to 1 to act as the inter-

ceptor. The bits are stored in a compact way that is memory efficient (32 times smaller

than the real valued counterpart). Once the binary intermediate features matrix F is

generated, it is used as the only predictors.
L2 regularized linear regression/logistic regression

For real valued TrY, we apply L2 regularized regression (ridge regression) on F and

TrY. We model Ŷ i ¼
X
j

βjFij , where β is the regression coefficient. The loss function

to be minimized is Loss ¼
X
i

TrY i−Ŷ i
� �2 þ λ

2

X
j≠1

β2j , where λ is a regularization parameter

which can be selected by cross validation or provided by the user. The β is estimated

by β̂ ¼ argminβLoss.

For binary valued TrY, we apply L2 regularized logistic regression on F and TrY. We

model Ŷ i ¼ 1

1þ exp −
X
j

βjFij

 !, where β is the regression coefficient. The loss function

to be minimized is Loss ¼
X
i

−TrY lnŶ − 1−TrYð Þ ln 1−Ŷ
� �þ λ

2

X
j≠1

β2j , where λ is a

regularization parameter. The β is estimated by β̂ ¼ argminβLoss.

These models are standard statistical models [19]. The L-BFGS (Limited-memory

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm) library was employed to per-

form the parameter estimation. The L-BFGS method only requires the gradient of the

loss function and approximates the Hessian matrix with limited memory cost. Prediction

is performed once the model parameters are estimated. Specifically, the same weights

that generated the intermediate features in the training dataset were used to generate

the intermediate features in the test dataset and use the estimated β̂ in the training

dataset to predict the phenotype Y in the test dataset.

Some optimization techniques are used to speed up the estimation: (1) using a

relatively large memory (~1GB) to further speed up the convergence of L-BFGS by a

factor of 5, (2) using SSE (Streaming SIMD Extensions) hardware instructions to

perform bit-float calculations which speeds up the naive algorithm by a factor of 5,

and (3) using multi-core parallelism with OpenMP (Open Multi-Processing) to

speed up the algorithm.
Benchmarking

We benchmarked nine methods including linear regression (Linear), logistic regression

(LR), k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM),

extreme learning machine (ELM), random forest (RF), generalized boosted regression

models (GBM) and random bit regression (RBR). Our RBR method and usage are
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available on the website (https://sourceforge.net/projects/rbr/). The KNN method

was implemented by our own C++ code. The other seven methods were implemented

by R (version: 3.0.2) package: stats, nnet (version: 7.3–8), kernlab (version: 0.9–19),

randomForest (version: 4.6–10), elmNN (version: 1.0), gbm (version: 2.1) accordingly.

The major differences between C++ and R platforms were runtime, and we didn’t see

any significant difference in prediction performance. Ten-fold cross validation was

used to evaluate their performance. For methods that are sensitive to parameters, the

parameters were manually tuned to obtain the best performances. The benchmarking

was performed on a desktop PC, equipped with an AMD FX-8320 CPU and 32GB

memory. The SVM on some large sample datasets failed to finish the benchmarking

within a reasonable time (2 week). Those results are left as blank.

We first benchmarked all methods on a simulated dataset. The dataset contains 1000

training samples and 1000 testing samples. It contains two variables (X, Y) and is cre-

ated with the simple formula: Y = Sin(X) +N(0, 0.1), X ∈ (−10π, 10π).
We then benchmarked all datasets from the UCI machine learning repository [20]

with the following inclusion criterion: (1) the dataset contains no missing values; (2)

the dataset is in dense matrix form; (3) for classification, only binary classification data-

sets are included; and (4) the included dataset should have a clear instruction and the

target variable should be specified.

Overall, we tested 14 regression datasets. They are: 1) 3D Road Network [21], 2) Bike

sharing [22], 3) buzz in social media tomhardware, 4) buzz in social media twitter, 5)

computer hardware [23], 6) concrete compressive strength [24], 7) forest fire [25], 8)

Housing [26], 9) istanbul stock exchange [27], 10) parkinsons telemonitoring [28], 11)

Physicochemical properties of protein tertiary structure, 12) wine quality [29], 13) yacht

hydrodynamics [30], and 14) year prediction MSD [31]. In addition, we tested 15 classi-

fication datasets: 1) banknote authentication, 2) blood transfusion service center [32],

3) breast cancer wisconsin diagnostic [33], 4) climate model simulation crashes [34], 5)

connectionist bench [35], 6) EEG eye state, 7) fertility [36], 8) habermans survival [37],

9) hill valley with noise [38], 10) hill valley without noise [38], 11) Indian liver patient

[39], 12) ionosphere [40], 13) MAGIC gamma telescope [41], 14) QSAR biodegradation

[42], and 15) skin segmentation [43].

All methods were also applied on one psoriasis [44, 45] GWAS genetic dataset to

predict disease outcomes. We used a SNP ranking method for feature selection which

was based on allelic association p-values in the training datasets, and selected top as-

sociated SNPs as input variables. To ensure the SNP genotyping quality, we removed

SNPs that were not in HWE (Hardy-Weinberg Equilibrium) (p-value < 0.01) in the

control population.

Results
We first examined the nonlinear approximation accuracy of the eight methods. Figure 1

shows the curve fitting for the sine function with several learning algorithms. We

observed that linear regression, ELM and GBM failed on this dataset and the SVM’s

fitting was also not satisfactory. On the contrary, KNN, NN, RF and RBR produced

good results.

Next we evaluated the performance of the eight methods for regression analysis.

Table 1 showed the average regression RMSE (root-mean-square error) of the eight

https://sourceforge.net/projects/rbr/


Fig. 1 Fitting a sine curve. Black dots are the theoretical values while red dots are fitted values
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methods on 14 datasets (see detailed description of databases). We observed several

remarkable features from Table 1. First, the RBR took ten first places, 3 s places and

one third places among the 14 datasets. In the cases that RBR was not in first place,

the difference between the RBR and the best prediction was within 2 %. RBR did not

experience any breakdown for all 14 datasets. The random forest was the second best

method, however, it suffered from failure on the yacht hydrodynamics dataset.

Finally, we investigated the performance of the RBR for classification. Table 2 showed

the classification error percentages of different methods on 16 datasets. RBR took 12

first places, and 4 s places. In the cases when the RBR was not the first place, the differ-

ence between the RBR method and the best classification was small and no failure was

observed. Despite its simplicity, KNN was the second best method and took three first

places. However, it suffered from failure/breakdown on the Climate Model Simulation

Crashes, EEG Eye State, Hill Valley with noise, Hill Valley without noise, and the Iono-

sphere dataset.

The RBR is also reasonably fast on big datasets. For example, it took two hours to

process the largest dataset year prediction MSD (515,345 samples, 90 features, and 105

intermediate features).

Discussion
Big data analysis consists of three scenarios: (1) a large number of observations with

limited number of features, (2) a large number of features with limited number of ob-

servations and (3) both numbers of observations and features are large. ‘Large number

of observations, with limited number of features’ may be easier than feature selection

by a domain expert, but it is also very important/challenging especially in big data era.



Table 1 Regression RMSE of different methods

RMSE Sample Feature Linear KNN NN SVM ELM GBM RF RBR

3D Road Network 434874 2 18.370 6.441 15.548 12.530 16.953 14.819 3.855 2.061

Bike_sharing 17389 16 141.865 104.576 65.994 114.155 94.564 96.765 49.366 40.54

buzz_in_social_media_tomhardware* 28179 97 1.446 0.758 0.373 1.489 1.581 0.311 0.310 0.313

buzz_in_social_media_twitter* 583250 78 1.333 0.516 0.505 - 1.034 0.484 0.471 0.472

computer_hardware 209 7 69.622 63.125 134.912 119.394 159.233 93.214 61.212 50.001

concrete_compressive_strength 1030 9 10.530 8.280 6.355 6.519 13.176 5.823 5.096 3.650

forest_fire* 517 13 1.503 1.399 2.095 1.499 1.401 1.399 1.454 1.390

Housing 506 12 4.884 4.099 4.943 3.752 7.922 3.749 3.097 2.770

istanbul_stock_exchange 536 8 0.012 0.013 0.039 0.013 0.016 0.012 0.013 0.012

parkinsons_telemonitoring 5875 26 9.741 6.097 6.690 7.160 10.354 6.889 3.909 3.954

Physicochemical_properties_of _protein_tertiary_structure 45730 9 5.185 3.790 6.118 6.254 6.118 5.047 3.454 3.407

wine_quality 6497 11 0.736 0.696 0.730 0.676 0.921 0.701 0.585 0.592

yacht_hydrodynamics 308 6 9.134 6.430 1.178 6.542 1.964 1.160 3.833 0.782

year_prediction_MSD 515345 90 9.550 9.216 10.931 - 11.468 9.626 9.242 9.144

The * means the dependent variable of the corresponding data was transformed by log function to be more asymptotically normal
The bold means the first place result of all methods compared
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Table 2 Classification error rates of difference methods

Error% Sample Feature LR KNN NN SVM ELM GBM RF RBR

banknote_authentication 1372 4 1.018 0.146 0.000 0.000 0.000 0.801 0.656 0.000

Blood_Transfusion_Service_Center 748 4 22.863 19.649 24.458 20.186 23.802 23.667 24.596 19.521

Breast_Cancer_Wisconsin_Diagnostic 569 30 5.091 2.810 8.446 2.456 8.800 3.863 4.211 2.281

Climate_Model_Simulation_Crashes 540 18 4.259 7.037 5.556 7.778 5.926 6.296 7.593 3.888

Connectionist_Bench 208 60 26.000 13.023 21.667 13.476 14.429 16.833 13.452 11.571

EEG_Eye_State 14980 14 35.748 15.374 31.569 19.519 42.336 24.172 6.001 6.612

Fertility 100 9 15.000 12.000 15.000 12.000 24.000 12.000 14.000 12.000

habermans_survival 306 3 25.849 25.160 30.710 26.742 27.400 27.774 27.409 25.118

Hill_Valley_with_noise 1212 100 42.001 45.707 5.280 46.283 23.422 50.906 43.065 4.041

Hill_Valley_without_noise 1212 100 41.340 41.668 0.000 46.618 15.596 51.734 39.602 0.744

Indian_Liver_Patient 579 10 27.828 27.822 30.206 28.684 28.336 28.336 29.189 27.644

Ionosphere 351 34 10.262 10.246 11.984 5.405 10.278 6.825 7.405 5.413

MAGIC_Gamma_Telescope 19020 10 20.878 15.857 13.170 12.976 22.639 13.991 11.725 11.435

QSAR_biodegradation 1055 41 13.366 13.754 14.978 12.144 22.381 14.884 13.180 12.043

Skin_Segmentation 245057 3 8.121 0.040 0.056 0.081 0.263 1.550 0.043 0.039

Psoriasis 1590 68–88 40.566 37.044 42.327 38.176 38.616 40.818 40.440 37.170

The bold means the first place result of all methods compared
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This paper focuses on the large number of observations with limited number of features.

We have addressed three key issues for big observation data analysis.

The first issue is how to split the sample space into sub-sample space. The

RBR algorithm has an intuitive understanding by geometric interpretations: each

intermediate feature (bit) split the sample space into two parts and serves a basis

function for regression. In one dimensional cases (shown in Fig. 1), it approximates func-

tions by a set of weighted step functions. In two dimensional cases (data not shown), the

large number of bits split the plane into mosaic-like regions. By assigning corresponding

weight to each bit, these regions can approximate 2-D functions. For high dimensional

spaces, the interpretation is similar to 2-D cases. Therefore, the RBR method with a large

number of intermediate features split the whole sample space into many relatively homo-

geneous sub-sample spaces. The RBR is similar to ELM, especially the one proposed by

Huang et al. [46]. The differences between them are (1) the amount of intermediate

features used, (2) the random feature generation and (3) the optimization. The RBR

utilizes a huge number of features (104 ~ 106) and the ELM uses a much small number

(<500). The ELM is small due to two reasons: (1) computational cost: O(intermediate

feature3). (2) accuracy problem. In the ELM larger number of features does not al-

ways lead to better prediction, usually ~100 features is the best choice. On the con-

trary, the RBR’s computational cost is O(intermediate feature) and a larger number of

features usually leads to better precision due to regularization. In practice, when the

number of random features are above 104, RBR will perform well and robust with

high probability. And when the number of random features are above 106, RBR’s run-

time will be a little slower and the prediction performance will not be significantly

improved (data not shown). So RBR chooses 104 ~ 106 as its practical number of

intermediate features. RBR’s random feature generation differs from that of the ELM.

The choice of sample based threshold ensures that the random bit divides the sample

space uniformly; on the contrary the ELM’s random feature does not guarantee uni-

form partition of the samples. It tends to focus the hidden units on the center of the

dataset thus badly fitting the remainder of the sample space (Fig. 1). The L-BFGS and

SSE optimization and multi-core parallelism make RBR 100 times faster than the ELM

when the same number of feature is employed. Huang et al. provide some theoretical

results for both the RBR and ELM.

The second issue is how the results from each of the subsets are then combined to

obtain an overall result. The RBR is closely related to boosting. Each RBR random bit

can be viewed as a weak classifier. Logistic regression is the same as one kind of boost-

ing algorithm named logit-boost. The RBR method boosts those weak bits to form a

strong classifier. The RBR is closely related to neural networks. The RBR is equivalent

to a single hidden layer neural network and the bits are the hidden units. The most in-

teresting that worth discussing are the ‘hill valley with noise’ and ‘hill valley without

noise’ datasets, each record represents 100 points on a two-dimensional graph. When

plotted in order (from 1 through 100) as the Y co-ordinate, the points will create either

a Hill or a Valley (https://archive.ics.uci.edu/ml/machine-learning-databases/hill-valley/

Hill_Valley_visual_examples.jpg). Only RBR and NN performed well (shown in Table 2

of the revised manuscript), and other methods failed. Although these datasets have high

dimension and deep interaction between multiple points, with hidden layer neural net-

work, RBR can recognize the complex patterns hidden in these datasets and have better

https://archive.ics.uci.edu/ml/machine-learning-databases/hill-valley/Hill_Valley_visual_examples.jpg
https://archive.ics.uci.edu/ml/machine-learning-databases/hill-valley/Hill_Valley_visual_examples.jpg
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prediction performance. Large number of bits is a conjugate fashion (we call it wide

learning) to deep learning. As no back-propagation is required, the learning rule is

quite simple, thus is biologically feasible. Biologically, the brain has the capacity to form

a huge feature layer (maybe 108 ~ 1010) to approximates functions well.

The third issue is computational cost. The RBR scales well in memory and computation

time compared to the SVM due to a fixed number of binary features. The RBR is faster

than the random forest or boosting trees due to the light weight nature of the bits.

Conclusions
In conclusion, we can confidently conclude that the RBR is a strong, robust and fast

off-the-shelf predictor especially in the big data era.
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