
Big Data AnalyticsYuen et al. Big Data Analytics (2016) 1:14
DOI 10.1186/s41044-016-0012-2

RESEARCH Open Access

An online-updating algorithm on
probabilistic matrix factorization with active
learning for task recommendation in
crowdsourcing systems
Man-Ching Yuen*, Irwin King and Kwong-Sak Leung

*Correspondence:
mcyuen@cse.cuhk.edu.hk
Department of Computer Science
and Engineering, The Chinese
University of Hong Kong, Shatin, NT,
Hong Kong, China

Abstract
Background: To ensure the output quality, current crowdsourcing systems highly rely
on redundancy of answers provided by multiple workers with varying expertise,
however massive redundancy is very expensive and time-consuming. Task
recommendation can help requesters to receive good quality output quicker as well as
help workers to find their right tasks faster. To reduce the cost, a number of previous
works adopted active learning in crowdsourcing systems for quality assurance. Active
learning is a learning approach to achieve certain accuracy with a very low cost.
However, previous works do not consider the varying expertise of workers for various
task categories in real crowdsourcing scenarios; and they do not consider new workers
who are not willing to work on a large amount of tasks before having a list of preferred
tasks recommended. In this paper, we propose ActivePMFv2, Probabilistic Matrix
Factorization with Active Learning (version 2), on a task recommendation framework
called TaskRec to recommend tasks to workers in crowdsourcing systems for quality
assurance. By assigning the most uncertain task for new workers to work on, this paper
identifies a flaw in our previous ActivePMFv1, Probabilistic Matrix Factorization with
Active Learning (version 1). Therefore, ActivePMFv2 can give new workers a list of
preferred tasks recommended faster than that of ActivePMFv1. Our factor analysis
model considers not only worker task selection preference, but also worker
performance history. It actively selects the most uncertain task for the most reliable
workers to work on to retrain the classification model. Moreover, we propose a generic
online-updating method for learning the model, ActivePMFv2. The larger the profile of
a worker (or task) is, the less important is retraining its profile on each new work done.
In case of the worker (or task) having large profile, our online-updating algorithm
retrains the whole feature vector of the worker (or task) and keeps all other entries in
the matrix fixed. Our online-updating algorithm runs batch update to reduce the
running time of model update.

Results: Complexity analysis shows that our model is efficient and is scalable to large
datasets. Based on experiments on real-world datasets, the result shows that the MAE
results andRMSE results of our proposed ActivePMFv2 are improved up to 29% and 35%
respectively comparing with ActivePMFv1, where ActivePMFv1 outperforms the PMF
(Continued on next page)

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41044-016-0012-2-x&domain=pdf
mailto: mcyuen@cse.cuhk.edu.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yuen et al. Big Data Analytics (2016) 1:14 Page 2 of 29

(Continued from previous page)

with other active learning approaches significantly as shown in previous work.
Experiment results show that our online-updating algorithm is accurate in
approximating to a full retrain of the learning model while the average runtime of
model update for each work done is reduced by more than 80 % (decreases from a few
minutes to several seconds).

Conclusions: To the best of our knowledge, we are the first one to use PMF, active
learning and dynamic model update to recommend tasks for quality assurance in
crowdsourcing systems for real scenarios.

Keywords: Crowdsourcing, Task recommendation, Matrix factorization, Probabilistic
matrix factorization

Background
Crowdsourcing is an idea of outsourcing a task to a large group of networked people in
the form of an open call to reduce the production cost [1, 2]. In recent years, crowdsourc-
ing systems attract much attentions at present [3, 4]. Some examples of crowdsourcing
systems are Amazon Mechanical Turk (or MTurk) [5], CrowdFlower [6], Taskcn [7] and
TopCoder [8]. In a crowdsourcing system, the output quality of a completed task in a
crowdsourcing system is “the extent to which the provided outcome fulfills the require-
ments of the requester” [9]. For quality assurance, a requester has to verify the quality
of every answer submitted by workers, and it is very time-consuming. Alternatively,
requesters highly rely on redundancy of answers provided by multiple workers with vary-
ing expertise, but massive redundancy is very expensive and time-consuming. “If we ask
10 workers to complete the same task, then the cost of crowdsourcing solutions tends
to be comparable to the cost of in-house solutions” [10]. Therefore, it is important to
investigate on how to support task requesters to verify correct answers on crowdsourc-
ing platforms easily and effectively. On the other hand, it is not efficient that the amount
of time for a worker spent on selecting a task is comparable with that spent on work-
ing on a task, but the monetary reward of a task is just a small amount. To address this
problem, task recommendation can help to provide a list of preferred tasks to work-
ers in crowdsourcing systems. However, new workers do not want to work on a large
number of tasks or wait for a long time before having a list of preferred tasks recom-
mended. Therefore, it is important to help workers to find their right tasks as quick as
possible and minimize the number of task assignments to achieve a target output qual-
ity [11]. The worker performance history makes it possible to mine workers’ preference
on tasks and to provide an indication of worker quality on tasks. Based on worker per-
formance history, an active learning approach on task recommendation can be used to
help requesters to receive good quality output quicker with lower cost, thus achieve
quality assurance in crowdsourcing systems. Moreover, by assigning the most uncertain
task for new workers to work on, it not only helps new workers having a list of pre-
ferred tasks recommended faster, but also improves the output quality of crowdsourcing
systems.
Task recommendation can help requesters to receive good quality output quicker as well

as help workers to find their right tasks faster. Probabilistic Matrix Factorization (PMF)
[12] is the state-of-the-art approach for recommendation systems. A factorization model

Yuen et al. Big Data Analytics (2016) 1:14 Page 3 of 29

has to be trained and learned before the model can be applied for prediction. In real-
world applications, the performance of a factorization model is highly affected by how
the model is updated, and thus dynamic updating a model is very important [13]. When
updating a worker’s profile, the profile will not change much if the worker having large
profile; while the profile will have great change if the worker having small profile.
Active learning is a learning approach to improve the prediction accuracy with a low

cost. By performing active learning in a task recommendation model, it can guarantee
the accuracy of recommendations with a very low cost, but it still needs to consider
the minimizaton of the user waiting time. The tasks recommended to the new workers
have to carefully selected, because new workers are not willing to work on a lot of tasks
before having their preferred tasks recommended. Therefore, systems that provide rec-
ommendations in large user waiting times are not suitable for real-world applications [14].
Moreover, it does not make sense to retrain the model from scratch whenever a worker
of large profile completes a task, because the performance improvement by retraining the
model in the case is tiny but the cost of retraing model is high. Furthermore, when a large
number of workers are working in the crowdsourcing system at the same period of time,
the computational complexity is very high if the model is retrained after each worker
completes a task. Batch update provides a method of reducing both user waiting time and
computational complexity.
Our contributions are as follows:

• First, we propose a way for quality assurance by performing ActivePMFv2,
Probabilistic Matrix Factorization with Active Learning (version 2), for task
recommendation in crowdsourcing systems, where ActivePMF is an active learning
approach on factor analysis based on probabilistic matrix factorization, such that the
worker latent feature space, task latent feature space and task category latent feature
space are learned. ActivePMF considers the varying expertise of workers for different
tasks in real crowdsourcing scenarios. The most informative task and the most
skillful worker are selected to learn the factor analysis model.

• Second, we first assign all new tasks to the most reliable workers based on the task
categories in our proposed ActivePMFv2, so new workers can receive a list of
preferred tasks recommended faster than that of ActivePMFv1 [15]. Our proposed
ActivePMFv2 also has better output prediction quality than that of ActivePMFv1.

• Third, we propose a generic online-updating method for learning a factor analysis
model, ActivePMFv2. In our proposed online-updating approach, our online-
updating algorithm applies on a learned PMF model without having retrain the whole
model. The proposed update methods are generic and appliable for all PMF models.

• Fourth, we demonstrate the performance of our proposed ActivePMFv2 by using the
real word dataset. The experimental results show that ActivePMFv2 outperforms
ActivePMFv1 by 29 % in the MAE results and 35 % in RMSE results, where
ActivePMFv1 outperforms PMF with various active learning approaches significantly
(PMF is the state-of-the-art approach for recommendation systems).

• Fifth, we demonstrate the performance of our online-updating algorithm by using
the real world dataset. The experiment results show that the prediction of
online-updating ActivePMF on TaskRec model approximates to that of a full retrain
of ActivePMF on TaskRec model while the running time of online-updating

Yuen et al. Big Data Analytics (2016) 1:14 Page 4 of 29

algorithm is significantly lower than that of a full retrain of the model. By using
online-updating algorithm, the average runtime of model update for each work done
is reduced by more than 80 % (decreases from a few minutes to several seconds).

• Finally, complexity analysis shows that our model is efficient and is scalable to large
datasets.

Related work
Crowdsourcing systems

Crowdsourcing is outsourcing a task to a large group of networked people in the form of
an open call to reduce the production cost. A crowdsourcing process involves operations
of both requesters and workers. A requester submits a task request; a worker selects and
completes a task; and the requester only pays the worker for the successful completion of
the task. Task recommendation in crowdsourcing is important because of the following
reasons:

• Motivate workers of diverse background to work on crowdsourcing tasks in
long run. Currently, on crowdsourcing sites, most workers only provide moderate
contributions [16] and there is a significant population of young and well-educated
Indian workers [17]. It can attract more workers to contribute their efforts in long
run if a worker find a suitable task on a crowdsourcing site easily.

• Improve the quality of work.Workers perform better if they are familiar with the
tasks. Chilton et al. [18] showed that task workers only browsed the first few pages on
crowdsourcing sites when searching for tasks. The task list for a worker of Amazon
MTurk site is usually displayed on hundreds of pages. A worker selects a task from
the list of available tasks sorted by a specified feature of tasks such as task creation
date and reward amount. When the tasks posted on the first few pages are not
suitable for a worker, the worker might choose a task that he does not familiar with
and try to complete it to earn the rewards; otherwise, the worker does not select any
task. Working with a unfamiliar task might decrease the quality of work.

Recommendation systems

Broadly speaking, recommendation systems are based on either content filtering
approach or collaborative filtering approach. The content filtering approach creates a
profile for each user or product, for example, a movie, to characterize its nature. The pro-
files of users and products allow programs to associate users with matching products.
The advantage is that it can address the system’s new products and users. However, the
profile information might not be available or easy to collect. On the other hand, the col-
laborative filtering approach relies only on past user behavior. This approach analyzes
relationships between users and interdependencies among products to identify new user-
item associations. It is generally more accurate than content filtering approach. However,
collaborative filtering cannot address the system’s new products and users [19], which is
the cold-start problem.
To address the cold-start problem, latent factor models are an alternative approach that

can approximate the ratings by characterizing both users and items on a number of factors
inferred from the ratings patterns. “Some of the most successful realizations of latent
factor models are based on matrix factorization.” [19] Matrix factorization has a lot of
applications [20, 21]. Although matrix factorization can solve the cold-start problem, it is

Yuen et al. Big Data Analytics (2016) 1:14 Page 5 of 29

not scalable. Probabilistic matrix factorization (PMF) model [22] can scale linearly with
the number of observations, and performs very well on large, sparse, and imbalanced
datasets.
Recently, several probabilistic matrix factorization methods [23] have been proposed

for collaborative filtering approach in recommendation systems. These methods focus on
using low-rank approximations to model the user-item rating matrix for making further
predictions. The premise behind a low-dimensional factor model is that there is only a
small number of factors influencing preferences, and that a user’s preference vector is
determined by how each factor applies to that user. The above approaches are used for
user recommendation in social tagging systems.

Task recommendation in crowdsourcing systems

A recommendation system can improve the performance of crowdsourcing systems by
providing task requesters some output quality controls based on a number of param-
eters, such as task requirements, task properties, worker interests, worker incentives,
and costs [24]. Based on collaborative filtering, Organisciak et al. [25] proposed two
approaches for capturing personal preferences in personalized item recommendation in
crowdsourcing systems; and they are taste-matching and taste-grokking. Taste-matching
uses workers’ taste to infer the requester’s taste where workers and the requester have
similar tastes, while taste-grokking uses workers’ explicit prediction on the requester’s
taste. Both taste-matching and taste-grokking have better performance than the use of
generic workers. Later, Organisciak et al. [26] demonstrated the performance of per-
sonalized crowdsourcing in a complexer environment by carrying out case studies on
personalized text highlighting in film reviews. The results show that both approaches
have better performance than a non-personalized baseline. Besides, the taste-grokking
approach performs well in simpler tasks and the taste-matching approach performs
well with larger crowds and tasks with latent decision-making variables. Ambati et al.
[27] proposed classification based task recommendation approach to recommend tasks
to users based on implicit modeling of skills and interests. However, these approaches
can not solve cold-start problem. Besides, task recommendation is much difficult than
product recommendation, and workers do not have to give ratings to tasks to indi-
cate the extent of their favor of each task. A crowdsourcing system needs some sig-
nals indicating types of available tasks, and the number of tasks workers select and
complete [28].

Active learning

Active learning is a learning approach to achieve certain accuracy with a very low cost.
Broadly speaking, active learning systems are based on either stream-based approach
[29] or pool-based approach [30]. The stream-based approach considers one unlabeled
instance each time, and decides whether to query its label or ignore it. This approach
is useful when unlabeled instance is continuously available but cannot be stored easily,
such as sensor data. However, as the stream-based approach relies on a real underlying
input distribution, it is difficult to decide whether to query the label of an instance or
ignore it at its arrival time. On the other hand, the pool-based approach ranks all unla-
beled instances in order of informativeness, and queries the label for the most informative

Yuen et al. Big Data Analytics (2016) 1:14 Page 6 of 29

unlabeled instance in the pool. The advantage is that large amount of unlabeled data are
available in many domains at present, this approach is very important. However, it is dif-
ficult to find a good way to choose good queries from the pool. In both stream-based
approach and pool-based approach, a query selection strategy is required to achieve high
accuracy with as low labeling cost as possible.
Several query selection strategies are commonly used in active learning systems. For

example, uncertainty sampling selects instances, which the current model is the most
uncertain about, to query. There are many ways tomeasure the uncertainty, such as small-
est margin [31], least confidence [32] and maximum entropy [33]. Another example of
query selection strategies is query by committee [34]. This approach maintains a commit-
tee of independently trained classification models, and queries the instance for which the
committee models disagree the most. Among all query selection strategies, uncertainty
sampling is one of the simplest and widely used strategies in active learning systems [35].

Active learning for task recommendation in crowdsourcing systems to achieve quality

assurance

Our motivation is the observation of the increase of difficulty for requesters to obtain
good output with low cost. Currently, active learning approach has been applied on a
number of quality assurance methods in crowdsourcing systems [35–37] because active
learning can achieve certain accuracy by using fewer annotations even in noisy annota-
tion scenarios. Laws et al. [36] demonstrated that actively selecting instances for label
query can achieve performance gains in natural language processing tasks. However, they
did not consider actively selecting annotators. To further improve the output quality, Yan
et al. [35] proposed to use uncertainty sampling to select the most uncertain instance to
query, and also uses an optimization formulation to choose multiple confident workers to
query from. However, it is costly to pay for multiple labelers. To characterize the strength
of each worker and improve the compentency of weak workers, Fang et al. [37] proposed
a Self-Taught Active Learning paradigm, where a weak worker can learn complementary
knowledge from a strong worker. Each labeler has a knowledge set (a set of confidence
scores), which is used for worker selection. By using the knowledge set of themost reliable
labeler to replace that of the most unreliable labeler, the most reliable labeler can teach
the unreliable labeler. However, the learning curves of different labelers vary in real
scenarios. Later, Fang and Zhu [38] proposed to use diversity density to character-
ize the oracle’s uncertain knowledge. However, an oracle does not exist in real-world
applications.
In recent years, a number of research works [39–42] proposed recommendation sys-

tems based on a Probabilistic Matrix Factorization (PMF) model to improve the output
quality in crowdsourcing systems, where Probabilistic Matrix Factorization (PMF) is the
state-of-the-art approach for recommendation systems. Jung and Lease [39] proposed to
use a PMF model to infer unobserved labels to reduce the bias of the existing crowd-
sourced labels, thus improve the quality of labels. Later, Jung [40] proposed to use a PMF
model to improve the quality of crowdsourcing tasks. Experimental results proved that
the strength of PMF over Singular Value Decomposition (SVD) and baseline methods.
However, it is not suitable for a huge number of tasks on crowdsourcing systems in reality.
Yuen et al. [41, 42] considered various task categories in real scenarios in crowdsourcing
systems and proposed a PMF model for task recommendation in crowdsourcing systems.

Yuen et al. Big Data Analytics (2016) 1:14 Page 7 of 29

They proved that considering task categories in PMF can improve the performance. How-
ever, it does not consider to reduce the labeling cost by applying active learning approach.
Later, Yuen et al. [15] proposed Probabilistic Matrix Factorization with Active Learning
(version 1) for task recommendation systems. The model outperforms the PMF model
with other active learning approaches, but newworkers have to wait for a long time before
having a list of perferred tasks recommended due to lack of worker performance history
for all new workers.

Task recommendation for new workers in crowdsourcing systems

In crowdsourcing systems, workers prefer to have a list of recommended tasks, but they
are not willing to work on a large number of tasks before having a list of preferred tasks
recommended. Since new workers have not worked on a lot of tasks yet, it is difficult for
a recommendation system to make a better recommendation for new workers due to the
small working profiles of new workers. When performing active learning in recommen-
dation systems, besides accuracy of recommendations and minimization of cost, it is also
important for new workers to have a list of preferred tasks recommended as soon as they
start working in a crowdsourcing system.

Dynamic-updating crowdsourcing systems for real-world scenarios

Some previous works proposed various ways to improve the performance of recom-
mendation systems for real-world scenarios [13, 14]. Rendle et al. [13] proposed an
online-updating algorithm for three kernal matrix factorization models, they are lin-
ear, logistic and linear non-negative matrix factorization model. They demonstrated that
the output quality of their proposed online-updating algorithm approximates to that of
fully retraining the models. However, the three kernal matrix factorization models are
designed for user-item matrices. Besides, the user preference on item category, which is
necessary for real-world applications, is not considered in the models. Karimi et al. [14]
proposed an active learning method for aspect model in recommendation systems. They
observed that “users are not willing to provide information for a large amount of items,
thus the quality of recommendations is affected specially for new users” [14], and a full
retrain of an aspect model needs a long time especially for a system of large number of
existing users. In their online-updating method, the aspect model is updated to learn user
latent factors for new users only and not the other users. Experimental results show that
the user waiting time of their method is significantly less than that of bayesian method,
but the prediction accuracy of their method is not always better than that of bayesian
method.

Our motivation

Our motivation is the observation of the increase of difficulty for workers to find their
preferred tasks [18, 43, 44], the increase of demand on task recommendation in crowd-
sourcing systems [45–47], and no previous works on task recommendation model for
crowdsourcing systems that considers dynamic-updating for reducing the user waiting
time on model update. To achieve certain output quality with a very low cost, we pro-
pose ActivePMFv2, Probabilistic Matrix Factorization with Active Learning (version 2),
for task recommendation in crowdsourcing systems to actively select the most uncertain
tasks and the most reliable workers for retraining the classification model. To reduce the

Yuen et al. Big Data Analytics (2016) 1:14 Page 8 of 29

user waiting time on the learning model update, we propose a generic online-updating
method for learning the model, ActivePMFv2.

Task recommendation framework
Our task recommendation framework (TaskRec) is based onmatrix factorizationmethod,
to perform factor analysis to learn the worker latent feature, the task latent feature and
the task category latent feature. To reduce the labeling cost and guarantee the output
quality, Probabilistic Matrix Factorization with Active Learning (version 2) selects the
most informative task to be learned and selects the best worker to query from.
The problem we study in this paper is how to effectively predict the missing values

in the worker-task performance matrix so as to select the most informative task for the
best worker to query from to achieve high accuracy with as few instances as possible. We
define the problem of quality assurance in crowdsourcing systems as follows:

Definition 1 Quality assurance problem: Given a set of workers WS = {wi}mi=1, a set of
tasks VS= {vj}nj=1, a set of ratings R = {rij} associated between worker wi and task vj where
rij ∈ R

M×N and only certain elements of R are initially known. The binary matrix I = {Iij}
of the same shape as R represents the known points, so that Iij is 1 if rij is observed and
0 otherwise. The set of (i, j) indexes where Iij = 0 is denoted by PS. Predict the set of the
unknown elements of R = {rij} where (i, j) ∈ PS. The aim of ActivePMF is to query the most
informative tasks selected from the set of the unknown elements of R = {rij}where (i, j) ∈ PS,
and to query from the most reliable workers.

To facilitate our discussions, Table 1 defines basic terms and notations used throughout
this paper.

Probabilistic Matrix Factorization on Task Recommendation Framework

Our model consists of three parts. First, we connect workers’ task preferring information
with workers’ category preferring information through the shared worker latent feature

Table 1 Basic notations throughout this paper

Notation Description

WS= {wi}mi=1 WS is the set of workers, wi is the i-th worker,m is the total number of workers

VS= {vj}nj=1 VS is the set of tasks, vj is the j-th task, n is the total number of tasks

CS= {ck}ok=1 CS is the set of task categories, ck is the k-th task category, o is the total number

of task categories

l ∈ R l is the number of dimensions of latent feature space

W ∈ R
l×m W is the worker latent feature matrix

V ∈ R
l×n V is the task latent feature matrix

C ∈ R
l×o C is the task category latent feature matrix

R = {rij}, R is the worker-task preferring matrix, rij is the extent of the favor of task vj
R ∈ R

m×n for worker wi

U = {uik}, U is the worker-category preferring matrix, uik is the extent of worker wi ’s

U ∈ R
m×o preference for category ck

D = {djk}, D is the task-category grouping matrix, djk indicates the task category ck that

D ∈ R
n×o task vj belongs to

(i, j) ∈ PS PS is the set of indexes where the rating rij is unknown

N(x|μ, σ 2) Probability density function of the Gaussian distribution with mean μ and variance σ 2

Yuen et al. Big Data Analytics (2016) 1:14 Page 9 of 29

space. Second, we connect workers’ task preferring information with tasks’ category
grouping information through the shared task latent feature space. Third, we con-
nect workers’ category preferring information with tasks’ category grouping information
through the shared category latent feature space. The graphical model of the TaskRec
framework is represented in Fig. 1.
By using a worker-task preferring matrix, we can measure the extend the worker prefer

to work the task and provide output that accepted by requesters. Unlike traditional rec-
ommendation systems, workers do not have to give ratings to tasks to indicate the extent
of their favor of each task. To have ratings on tasks, we transform workers’ behaviors into
values as follows:

Worker Behavior Value
Worker’s work done is accepted by requester. −→ 5
Worker’s work done is rejected by requester. −→ 4
Worker completes a task and submits the work done. −→ 3
Worker selects a task to work on but not complete it. −→ 2
Worker browses the detailed information of a task. −→ 1
Worker does not browse the detailed information of a task. −→ 0

In some cases, the ratings based on value transformation of worker behavior would be
inaccurate on reflecting workers’ task preference. For example, a worker’s work done is
being accepted, but he might not like the task very much.

Fig. 1 Graphical Model for TaskRec. This is the graphical model for TaskRec, a task recommendation
framework in crowdsourcing systems

Yuen et al. Big Data Analytics (2016) 1:14 Page 10 of 29

Worker-task preferring matrix factorization

We have m workers, n tasks. The worker-task preferring matrix is denoted as R, the ele-
ment rij in Rmeans the extent of the favor of task vj for worker wi, where values of rij are
within the range [0, 1]. Without loss of generality, we first map the ratings that inferred
from worker behavior 1, ..., 5 to the interval [0, 1] using the function f (x) = x/5. Hence,
we are given a partially observed worker-task preferring matrix, R, withm workers and n
tasks.
To learn the workers’ preference on the tasks, we employ matrix factorization, more

specifically, ProbabilisticMatrix Factorization (PMF) [12], to recover the worker-task pre-
ferring matrix. Given the partial observed matrix R, we aim at decomposing the matrix R
into two l-dimensional low-rank featurematrices,W andV, whereW ∈ R

l×m is the latent
feature matrix for workers with column vector Wi, and V ∈ R

l×n is the latent feature
matrix for tasks with column vector Vj.
To learn the matrices, a Gaussian distribution on the residual of the observed ratings is

assumed as [12], and it is defined in Eq. (1):

p(R|W ,V , σ 2
R) =

m∏

i=1

n∏

j=1

[
N(rij|g(WT

i Vj), σ 2
R)

]IRij , (1)

where N(x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2, and IRij is the indicator function that is equal to 1 if the entry
rij is observed and equal to 0 otherwise. The Gaussian distribution model can make pre-
dictions outside of the range of valid values. The function g(x) is the logistic function
g(x) = 1/(1 + exp(−x)), which makes it possible to bound the range ofWT

i Vj within the
range [0, 1]. Similar to [48], to avoid overfitting, zero-mean spherical Gaussian priors are
also placed on the worker and task feature matrices, which are defined in Eq. (2):

p
(
W |σ 2

W
) =

m∏

i=1
N

(
Wi|0, σ 2

W
)
, p

(
V |σ 2

V
) =

n∏

j=1
N

(
Vj|0, σ 2

V
)
. (2)

Hence, through a Bayesian inference, the posterior distributions ofW and V based only
on the observed ratings are derived in Eq. (3):

p
(
W ,V |R, σ 2

R , σ 2
W , σ 2

V
) ∝ p

(
R|W ,V , σ 2

R
)
p

(
W |σ 2

W
)
p

(
V |σ 2

V
)

=
m∏

i=1

n∏

j=1

[
N

(
rij|g(WT

i Vj), σ 2
R

)]IRij ×
m∏

i=1
N(Wi|0, σ 2

W) ×
n∏

j=1
N

(
Vj|0, σ 2

V
)
. (3)

Worker-category preferring matrix factorization

We have m workers and o task categories. The worker-category preferring matrix is
denoted as U, where the element uik in U represents the extent of worker wi’s preference
for task category ck . Workers’ performance histories indicate workers’ preference for task
categories, so the meaning of uik can be interpreted as whether the worker wi has com-
pleted a task of the category ck where the task is accepted (a binary representation), or how
strong the worker wi’s preference is for the task category ck (a real value representation).

Yuen et al. Big Data Analytics (2016) 1:14 Page 11 of 29

We represent uik as shown in Eq. (4):

uik = g(f (wi, ck)), (4)

where g(.) is the logistic function, and f (wi, ck) represents the number of times worker wi
completes a task of the category ck where the task is accepted.
The idea of worker-category preferring matrix factorization is to derive two low-rank

l-dimensional matrices W and C, where W ∈ R
l×m and C ∈ R

l×o are the latent feature
matrices for workers and task categories, respectively. The column vectorsWi andCk rep-
resenting the l-dimensional worker-specific and category-specific latent feature vectors
of worker wi and category ck , respectively. We can define the conditional distributions
over the observed worker-category preferring matrix in Eq. (5):

p(U|W ,C, σ 2
U) =

m∏

i=1

o∏

k=1

[
N(uik|g(WT

i Ck), σ 2
U)

]IUik , (5)

where N(x|μ, σ 2) is the probability density function of the Gaussian distribution with
meanμ and variance σ 2, and IUik is the indicator function that is equal to 1 if workerwi has
at least one completed task of the category ck being accepted and equal to 0 otherwise.
To avoid overfitting, zero-mean spherical Gaussian priors are placed on the worker and

the category latent feature matrices, which are defined in Eq. (6):

p(W |σ 2
W) =

m∏

i=1
N(Wi|0, σ 2

W), p(C|σ 2
C) =

o∏

k=1
N(Ck|0, σ 2

C). (6)

Hence, through a Bayesian inference, the posterior distributions ofW and C based only
on the observed ratings are derived in Eq. (7):

p(W ,C|U , σ 2
C , σ

2
W , σ 2

U) ∝ p(U|W ,C, σ 2
U)p(W |σ 2

W)p(C|σ 2
C)

=
m∏

i=1

o∏

k=1

[
N(uik|g(WT

i Ck), σ 2
U)

]IUik ×
m∏

i=1
N(Wi|0, σ 2

W) ×
o∏

k=1
N(Ck|0, σ 2

C). (7)

Task-category groupingmatrix factorization

We have n tasks and o task categories. The task-category grouping matrix is denoted as
D, where the element djk in D shows the category ck that task vj belongs to. The mean-
ing of djk can be interpreted as whether the task vj belongs to the category ck (a binary
representation) . We represent djk as shown in Eq. (8):

djk = f (vj, ck), (8)

where f (vj, ck) is an indicator variable with the value of 1 if the task vj belongs to the
category ck , and 0 otherwise.
The idea of task-category grouping matrix factorization is to derive two low-rank l-

dimensional matrices V and C, where V ∈ R
l×n and C ∈ R

l×o are the latent feature
matrices for tasks and task categories, respectively. The column vectors Vj and Ck rep-
resenting the l-dimensional task-specific and category-specific latent feature vectors of
task vj and category ck , respectively. We can define the conditional distributions over the

Yuen et al. Big Data Analytics (2016) 1:14 Page 12 of 29

observed task-category grouping matrix in Eq. (9):

p(D|V ,C, σ 2
D) =

n∏

j=1

o∏

k=1

[
N(djk|g(VT

j Ck), σ 2
D)

]IDjk , (9)

where N(x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2, and IDjk is the indicator function that is equal to 1 if the entry djk
is observed and equal to 0 otherwise.
To avoid overfitting, zero-mean spherical Gaussian priors are placed on the task and

the category latent feature matrices, which are defined in Eq. (10):

p(V |σ 2
V) =

n∏

j=1
N(Vj|0, σ 2

V), p(C|σ 2
C) =

o∏

k=1
N(Ck|0, σ 2

C). (10)

Hence, through a Bayesian inference, the posterior distributions of V and C based only
on the observed ratings are derived in Eq. (11):

p(V ,C|D, σ 2
C , σ

2
V , σ 2

D) ∝ p(D|V ,C, σ 2
D)p(V |σ 2

V)p(C|σ 2
C)

=
n∏

j=1

o∏

k=1

[
N(djk|g(VT

j Ck), σ 2
D)

]IDjk ×
n∏

j=1
N(Vj|0, σ 2

V) ×
o∏

k=1
N(Ck|0, σ 2

C). (11)

A unified matrix factorization for TaskRec

According to the graphical model of the TaskRec framework described in Fig. 1, we derive
the log function of the posterior distributions of TaskRec in Eq. (12):

ln p(W ,V ,C|R,U ,D, σ 2
W , σ 2

V , σ 2
C , σ

2
R , σ 2

U , σ 2
D)

= − 1
2σ 2

R

m∑

i=1

n∑

j=1
IRij

(
rij − g

(
WT

i Vj
))2 − 1

2σ 2
U

m∑

i=1

o∑

k=1
IUik

(
uik − g

(
WT

i Ck
))2

− 1
2σ 2

D

n∑

j=1

o∑

k=1
IDjk

(
djk − g

(
VT
j Ck

))2 − 1
2σ 2

W

m∑

i=1
WT

i Wi − 1
2σ 2

V

n∑

j=1
VT
j Vj

− 1
2σ 2

C

o∑

k=1
CT
k Ck −

m∑

i=1

n∑

j=1
IRij ln σR −

m∑

i=1

o∑

k=1
IUik ln σU −

n∑

j=1

o∑

k=1
IDjk ln σD

− l
m∑

i=1
ln σW − l

n∑

j=1
ln σV − l

o∑

k=1
ln σC + C, (12)

where C is a constant independent of the parameters. We can see the Eq. (12) is an uncon-
strained optimization problem, and maximizing the log-posterior distributions with
fixed hyper parameters is equivalent to minimizing the sum-of-squared-errors objective
function with quadratic regularized terms in Eq. (13):

Yuen et al. Big Data Analytics (2016) 1:14 Page 13 of 29

E(W ,V ,C,R,U ,D)

=1
2

m∑

i=1

n∑

j=1
IRij

(
rij − g

(
WT

i Vj
))2 + θU

2

m∑

i=1

o∑

k=1
IUik

(
uik − g

(
WT

i Ck
))2

+ θD
2

n∑

j=1

o∑

k=1
IDjk

(
djk − g

(
VT
j Ck

))2

+ θW
2

m∑

i=1
WT

i Wi + θV
2

n∑

j=1
VT
j Vj + θC

2

o∑

k=1
CT
k Ck , (13)

where θU = σ 2
R/σ 2

U , θD = σ 2
R/σ 2

D, θW = σ 2
R/σ 2

W , θV = σ 2
R/σ 2

V , and θC = σ 2
R/σ 2

C . The
local minimum can be found by performing the gradient descent on Wi, Vj and Ck , and
the derived gradient descent equations are described in Eq. (14), Eq. (15) and Eq. (16)
respectively:

∂E
∂Wi

=
n∑

j=1
IRij

(
g
(
WT

i Vj
)

− rij
)
g

′ (
WT

i Vj
)
Vj + θWWi

+ θU

o∑

k=1
IUik

(
g
(
WT

i Ck
)

− uik
)
g

′ (
WT

i Ck
)
Ck , (14)

∂E
∂Vj

=
m∑

i=1
IRij

(
g
(
WT

i Vj
)

− rij
)
g

′ (
WT

i Vj
)
Wi + θVVj

+ θD

o∑

k=1
IDjk

(
g
(
VT
j Ck

)
− djk

)
g

′ (
VT
j Ck

)
Ck , (15)

∂E
∂Ck

=θU

m∑

i=1
IUik

(
g
(
WT

i Ck
)

− uik
)
g

′ (
WT

i Ck
)
Wi + θCCk

+ θD

n∑

j=1
IDjk

(
g
(
VT
j Ck

)
− djk

)
g

′ (
VT
j Ck

)
Vj, (16)

where g ′
(.) is the first-order derivative of the logistic function. To reduce the model com-

plexity, we set θW = θV = θC in our experiments. The training time for our model scales
linearly with the number of observations.

ActivePMFv2 - active learning for concurrent selection of task and worker
We first query all new tasks, which have not been tried by anyone, from the most reliable
worker. Then, we query the most uncertain task from all new workers. Next, we query the
most uncertain task, and select the most reliable worker for the task to query from. Our
proposed ActivePMFv2 is presented in Algorithm 1.

Random new task selection for reliable worker

To learn the most accurate classifier with the least number of work done, we first query
all new tasks, as given in Eq. (17), and select the most reliable worker in the task category
to query from, as given in Eq. (18).

Yuen et al. Big Data Analytics (2016) 1:14 Page 14 of 29

Algorithm 1 Probabilistic Matrix Factorization with Active Learning (version 2),
ActivePMFv2
Input:

Partially observed worker-task matrix, R;
Maximum num of queries,MaxQueries;
Active-sampling heuristic, h (use uncertainty-sampling using the Maximum
Difference between predicted rate and observed rate: argmaxvj∈VS

∑m
i=1

1∑m
i=1 Iij

∣∣∣IRij
(
g
(
WT

i Vj
) − rij

)∣∣∣);
Output:

Full worker-task matrix Rfull valued within the interval [0, 1] predicting unobserved
entries of R;

Initialize:
Rtmp = R; /* currently observed data */
NumQueries = 0; /*num of queries done by workers*/

1: R̄full = PMF(Rtmp); /* compute full matrix R̄full */
2: Un = set of unobserved entries of Rtmp;
3: NewT = Select all new tasks;
4: NewW = Select all new workers;
5: Set = ActiveSelect(h, R̄full, Un); /* select the most uncertain unobserved instances

(MaximumDifference between predicted rate and observed rate) fromUn-New using
h and current predictions R̄full */

6: if |NewT | > 0 then
Select a new task v∗ from New using Eq. (17);
Select the most reliable worker w∗ for task v∗ using Eq. (18);
Request worker w∗ to work on task v∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

7: else
8: if |NewW | > 0 then

Select the most uncertain task v∗∗ from Set using Eq. (19);
Select a new worker w∗∗ for task v∗∗ using Eq. (20);
Request worker w∗∗ to work on task v∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

9: else
Select the most uncertain task v∗∗∗ from Set using Eq. (21);
Select the most reliable worker w∗∗∗ for task v∗∗∗ using Eq. (22);
Request worker w∗∗∗ to work on task v∗∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

10: end if
11: end if
12: if (NumQueries < MaxQueries) then

Go to Step 1
13: else
14: return R̄full;
15: end if

Yuen et al. Big Data Analytics (2016) 1:14 Page 15 of 29

v∗ = {vj|∃vj ∈ VS; Iij = 0,∀wi ∈ WS}, (17)

w∗ = arg max
wi∈WS

uik where djk = 1, vj = v∗, (18)

In Algorithm 1, Step 6 represents the process of new task selection for most reliable
worker in the category.

Uncertainty sampling for task selection for randomly selected newworker

The algorithm assumes a particular active learning heuristic specified as an input, and we
adopt uncertainty-sampling [30] using the Maximum Difference between predicted rate
and observed rate as in Eq. (19) to choose the most uncertain task, that requires mini-
mization of uncertainty. To let new workers having a list of preferred tasks recommended
but not having to work on a large amount of tasks beforehand, we randomly select a new
worker (if any) to query from, as given in Eq. (20).

v∗∗ = arg max
vj∈VS

m∑

i=1

1∑m
i=1 Iij

∣∣∣IRij
(
g
(
WT

i Vj
)

− rij
)∣∣∣, (19)

w∗∗ = {wi|∃wi ∈ WS; Iij = 0,∀vj ∈ VS}. (20)

In Algorithm 1, Step 8 represents the process of most uncertain task selection for new
worker.

Uncertainty sampling for task selection for reliable worker

The algorithm assumes a particular active learning heuristic specified as an input, and
we adopt uncertainty-sampling [30] using the Maximum Difference between predicted
rate and observed rate as in Eq. (21) to choose the most uncertain task, that requires
minimization of uncertainty. To select the most reliable worker for the most uncertain
task, we select the worker with the maximumworker-category perferring score where the
category that the task belongs to as in Eq. (22).

v∗∗∗ = arg max
vj∈VS

m∑

i=1

1∑m
i=1 Iij

∣∣∣IRij
(
g
(
WT

i Vj
)

− rij
)∣∣∣, (21)

w∗∗∗ = arg max
wi∈WS

uik where djk = 1, vj = v∗∗∗. (22)

In Algorithm 1, Step 9 represents the most uncertain task selection for the most reliable
worker.
After annotation, the selected task is removed from the unlabeled data set. Next, the

selected task and its rate are added to the set of labeled dataset. The model is then
retrained on the labeled tasks and the informativeness of the remaining tasks in the
unlabeled data set is re-evaluated.

Online-updating on ActivePMFv2 - online-update on active learning for
concurrent selection of task and worker
In this section, we present our online-updating approach for learning the matrix factor-
ization model, ActivePMFv2 model. The online-updating approach of ActivePMFv2 is

Yuen et al. Big Data Analytics (2016) 1:14 Page 16 of 29

presented in Algorithm 2, while the full retrain approach of ActivePMFv2 is presented in
Algorithm 1. The online-updating approach uses the same sampling heuristics and the
same active learning approach in query method as that of the full retrain approach. The
main difference between the online-updating approach and the full retrain approach is
the model update methods they used. In the full retrain approach, it retrains the whole
learning model after each work done. In the online-updating approach, it has two main
parts: (1) It retrains the learning model in batch mode where model update occurs after
a number of work done; (2) For each work done related to a worker (or task) having pro-
file larger than the threshold, it updates the whole feature vector of the worker (or task)
and keeps all other entries in the feature matrix fixed. On the other hand, for work done
related to a worker (or task) having profile smaller than the threshold, it updates the whole
feature matrix.

Partial update

The impact on retraining the whole learning model decreases as the profile size of the
worker (or task) increases. Especially when work done by new workers or work done on
task having small profile, updating the feature matrix is crucial. For a new worker, each
work done by him will result in much change in his task perference in his worker profile;
while for a worker that has already completed a lot of tasks, each work done by him will
not change much in his worker profile. Updating feature vectors for a worker (or task)
having smaller profile results in a much better model. As a result, for a worker (or task)
having large profile, we observe that the model learned from retraining the feature vector
of the worker (or task) only is approximate to that learned from a full retrain.
As mentioned before, through a Bayesian inference, the posterior distributions of W

and V based only on the observed ratings are derived in Eq. (3), while the posterior distri-
butions ofW and C based only on the observed ratings are derived in Eq. (7). For partial
update on a large worker profile, we only retrain the feature vector of the selected worker
wm′ in worker-task preferring matrix and worker-category preferring matrix as shown in
Eq. (23) and Eq. (24) respectively.

FVWV (wm′)

=
m′∏

i=m′

n∏

j=1

[
N(rij|g(WT

i Vj), σ 2
R)

]IRij ×
m′∏

i=m′
N(Wi|0, σ 2

W I) ×
n∏

j=1
N(Vj|0, σ 2

V I), (23)

FVWC(wm′)

=
m′∏

i=m′

o∏

k=1

[
N(uik|g(WT

i Ck), σ 2
U)

]IUik ×
m′∏

i=m′
N(Wi|0, σ 2

W I) ×
o∏

k=1
N(Ck|0, σ 2

CI). (24)

As stated previously, through a Bayesian inference, the posterior distributions ofW and
V based only on the observed ratings are derived in Eq. (3), while the posterior distribu-
tions of V and C based only on the observed ratings are derived in Eq. (11). For partial
update on a large task profile, we only retrain the feature vector of the selected task vn′

in worker-task preferring matrix and task-category grouping matrix as shown in Eq. (25)
and Eq. (26) respectively.

Yuen et al. Big Data Analytics (2016) 1:14 Page 17 of 29

Algorithm 2Online-Updating on ActivePMFv2
Input:

Partially observed worker-task matrix, R;
Threshold, Threshold;
Batch size, BatchSize;
Active-sampling heuristic, h (use uncertainty-sampling using the Maximum
Difference between predicted rate and observed rate: argmaxvj∈VS

∑m
i=1

1∑m
i=1 Iij

∣∣∣IRij
(
g
(
WT

i Vj
) − rij

)∣∣∣);
Output:

Full worker-task matrix Rfull valued within the interval [0, 1] predicting unobserved
entries of R;

Initialize:
Rtmp = R; /* currently observed data */
NumQueries = 0; /*num of queries done by workers*/

1: R̄full = PMF(Rtmp); /* compute full matrix R̄full */
2: Un = set of unobserved entries of Rtmp;
3: NewT = Select all new tasks;
4: NewW = Select all new workers;
5: Set = ActiveSelect(h, R̄full,Un); /* select the most uncertain unobserved instances (Max-

imum Difference between predicted rate and observed rate) from Un-New using h and
current predictions R̄full */

6: if |NewT | > 0 then
Select a new task v∗ from New using Eq. (17);
Select the most reliable worker w∗ for task v∗ using Eq. (18);
Request worker w∗ to work on task v∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

7: else
8: if |NewW | > 0 then

Select the most uncertain task v∗∗ from Set using Eq. (19);
Select a new worker w∗∗ for task v∗∗ using Eq. (20);
Request worker w∗∗ to work on task v∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

9: else
Select the most uncertain task v∗∗∗ from Set using Eq. (21);
Select the most reliable worker w∗∗∗ for task v∗∗∗ using Eq. (22);
Request worker w∗∗∗ to work on task v∗∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

10: end if
11: end if
12: if (Worker Profile >= Threshold) and (Task Profile >= Threshold) then

Update the feature vectors of the selected worker wm′ using Eq. (23), Eq. (24);
Update the feature vectors of the selected task vn′ using Eq. (25), Eq. (26);

13: else
14: if (Worker Profile >= Threshold) then

Update the feature vectors of the selected worker wm′ using Eq. (23), Eq. (24);
15: else
16: if (Task Profile >= Threshold) then

Update the feature vectors of the selected task vn′ using Eq. (25), Eq. (26);
17: else

Update the feature vectors of all workers;
Update the feature vectors of all tasks;

18: end if
19: end if
20: end if
21: if (No new incoming work done) then
22: return R̄full;
23: end if
24: if (NumQueriesmod BatchSize = 0) then

NumQueries = 0;
Go to Step 1;

25: else
Go to Step 2;

26: end if

Yuen et al. Big Data Analytics (2016) 1:14 Page 18 of 29

FVWV (vn′)

=
m∏

i=1

n′∏

j=n′

[
N(rij|g(WT

i Vj), σ 2
R)

]IRij ×
m∏

i=1
N(Wi|0, σ 2

W I) ×
n′∏

j=n′
N(Vj|0, σ 2

V I), (25)

FVVC(vn′)

=
n′∏

j=n′

o∏

k=1

[
N(djk|g(VT

j Ck), σ 2
D)

]IDjk ×
n′∏

j=n′
N(Vj|0, σ 2

V I) ×
o∏

k=1
N(Ck|0, σ 2

CI). (26)

In Algorithm 2, Step 12, 14 and 16 represents the process of partial update. For a worker
(or task) having profile size larger than the threshold, the algorithm retrains the fea-
ture vector of the worker (or task) and keep all other entries in the matrix unchanged;
otherwise, the algorithm retrains the feature vectors of all workers and all tasks.

Batch update

The time for retraining a learning model is proportional to the computational complexity
of the model and the amount of information stored in the model; while the amount of
information depends on the number of workers, the number of tasks and the number of
work done. Retraining a large learning model takes a long time. For a large real-world
crowdsourcing system, it is inefficient if the whole model is retrained from scratch once a
worker completes a task.
In Algorithm 2, Step 24 and 25 represents the process of batch update. When the num-

ber of work done is smaller than the batch size, the learning model is not retrained. On
the other hand, when the number of work done is larger than the batch size, the algorithm
retrains the learning model.

General update problem

Our proposed online-updating approach can also be applied in a general update problem.
In a general recommendation system, a new rating ru,i might affect the features of both
user u and item i. The partial update method works based on the following conditions: (1)
If the profiles of both user and item are large, it could update the feature vectors of both
the selected user and the selected item; (2) If the user profile is large (but the item profile
is small), it could update the user feature vector only; (3) If the item profile is large (but
the user profile is small), it could update the item feature vector only; (4) If the profiles of
both user and item are small, it could update the feature vectors of all users and all items.
Besides, based on the number of new incoming ratings, the batch update method retrains
the whole learning model. A general update algorithm is shown in Algorithm 3.

Complexity analysis

To compute the complexity of our ActivePMFv2, we consider both the computation of
the gradient descent methods and the computation of selecting the most uncertain task
for the most reliable worker. The main computation of the gradient descent methods is
evaluating objective function E and corresponding gradients on variables. Because of the
sparsity of matrices R, U, and D, the complexity of evaluating the objective function in
Eq. (13) isO (nRl + nUl + nDl), where nR, nU and nD are the number of non-zero entries

Yuen et al. Big Data Analytics (2016) 1:14 Page 19 of 29

Algorithm 3 General Online-Updating Algorithm
Input:

Partially observed user-item matrix, R;
Threshold, Threshold;
Batch size, BatchSize;
Active-sampling heuristic, h;

Output:
Full user-itemmatrix Rfull valued within the interval [0, 1] predicting unobserved entries
of R;

Initialize:
Rtmp = R; /* currently observed data */
NumQueries = 0; /*num of queries done by workers*/

1: R̄full = compute full matrix R̄full by using Rtmp
2: Un = set of unobserved entries of Rtmp;

Request the rating from user u on item i;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

3: if (User Profile >= Threshold) and (Item Profile >= Threshold) then
Update the feature vector of the user in the matrix Rtmp;
Update the feature vector of the item in the matrix Rtmp;

4: else
5: if (User Profile >= Threshold) then

Update the feature vector of the user in the matrix Rtmp;
6: else
7: if (Item Profile >= Threshold) then

Update the feature vector of the item in the matrix Rtmp;
8: else

Update the feature vectors of all users;
Update the feature vectors of all items;

9: end if
10: end if
11: end if
12: if (No new incoming rating) then
13: return R̄full;
14: end if
15: if (NumQueriesmod BatchSize = 0) then

NumQueries = 0;
Go to Step 1;

16: else
Go to Step 2;

17: end if

in matrices R, U, and D respectively, and l is the number of dimensions of latent fea-
ture space. By using the similar approach, we can derive the complexities of Eq. (14),
Eq. (15) and Eq. (16). For the computation of selecting the most uncertain task for the
most reliable worker, the complexity of selecting the most uncertain task in Eq. (21) is
O (nRl), the complexity of selecting the most reliable worker in Eq. (22) isO (m), and thus
the total complexity of assigning a task to a worker is O (m + nRl). As a result, the total
complexity for one iteration is O (m + nRl + nUl + nDl). It means that the complexity is
linear with respect to the number of workers and the number of observations in the three
sparse matrices. The complexity analysis shows that ActivePMFv2 can scale to very large
datasets.
To apply online-updating approach when learning ActivePMFv2 model, we consider

both the partial update method and the batch update method. Since only some non-zero
entries in matrices is updated in the partial update method, the complexity of evaluat-
ing the objective function in Eq. (13) is O (zRl + zUl + zDl), where zR, zU and zD are the
number of non-zero entries to be updated in matrices R, U, and D respectively, and l is
the number of dimensions of latent feature space. As a result, the total complexity for one

Yuen et al. Big Data Analytics (2016) 1:14 Page 20 of 29

iteration is O (m + zRl + zUl + zDl), where zR << nR, zU << nU , zD << nD. Based on
our observation, the complexity of learning ActivePMFv2 model can be highly reduced
by using the partial update method. Besides, the batch method can greatly reduce the
number of iterations, thus further reduce the computational complexity.

Experimental analysis
In this section, our experiments are intended to address the following five research
questions:

1. How is ActivePMFv1 approach compared with PMF with various active learning
approaches?

2. How is ActivePMFv1 approach compared with PMF with various active sampling
heuristics?

3. How is our ActivePMFv2 approach compared with ActivePMFv1?
4. How is the partial update part of online-updating approach compared with the full

retrain when learning ActivePMFv2 model?
5. How is the batch update part of online-updating approach compared with the full

retrain when learning ActivePMFv2 model?

Description of dataset

We use the same dataset as shown in [41]. Our dataset is retrieved from the recent
NAACL 2010 workshop on crowdsourcing, which has made publicly available all the data
collected as part of the workshop [49]. The data was collected within a month frommulti-
ple requesters seeking data for a diverse variety of tasks onMTurk. Table 2 provides some
statistics about our dataset. Our dataset is mainly related to tasks for creating speech and
language data. The task categorization is shown in Table 3.

Evaluation metrics

For performance comparison with our proposed ActivePMFv2, we implement PMF
(Probabilistic Matrix Factorization) with the following Active Learning baselines:

• T[Rand]W[Rand]: It assigns a randomly selected task to a randomly selected worker.
• T[MaxDiff]W[Rand]: It assigns the task of maximum difference between its

observed values and its predicted values to a randomly selected worker.
• T[Rand]W[Reli]: It assigns a randomly selected task to the most reliable worker in

the task category.

Table 2 Statistics of our dataset

Number of workers 1,592

Number of different tasks 6,639

Number of categories 43

Total HITs from all tasks 19,815

Number of ratings 19,815

Max number of HITs of a worker 2,691

Min number of HITs of a worker 1

Average number of HITs of a worker 12.4

1st quartile (25th percentile) of number of HITs of a worker 1

2nd quartile (50th percentile) of number of HITs of a worker 2

3rd quartile (75th percentile) of number of HITs of a worker 5

Yuen et al. Big Data Analytics (2016) 1:14 Page 21 of 29

Table 3 Task categorization by both language and keywords given by MTurk in our dataset

1 English-Afrikaans translations 23 English-Romanian translations

2 English-Azeri translations 24 English-Russian translations

3 English-Bulgarian translations 25 English-Slovak translations

4 English-Bangla translations 26 English-Somali translations

5 English-Bosnian translations 27 English-Albanian translations

6 English-Welsh translations 28 English-Serbian translations

7 English-Spanish translations 29 English-Tamil translations

8 English-Basque translations 30 English-Thai translations

9 English-Farsi translations 31 English-Turkmen translations

10 English-Irish translations 32 English-Tagalog translations

11 English-Hindi translations 33 English-Turkish translations

12 English-Indonesian translations 34 English-Tatar translations

13 English-Korean translations 35 English-Ukrainian translations

14 English-Kurdish translations 36 English-Urdu translations

15 English-Latin translations 37 English-Uzbek translations

16 English-Latvian translations 38 English annotations

17 English-Mongolian translations 39 Spanish annotations

18 English-Maltese translations 40 Arabic annotations

19 English-Nepali translations 41 English relevance judgment

20 English-Punjabi translations 42 English creative writing

21 English-Kapampangan translations 43 English transcription

22 English-Polish translations

• T[MaxDiff]W[Reli]: It assigns the task of maximum difference between its observed
values and its predicted values to the most reliable worker in the task category.

• T[N]W[Reli]+T[MaxPredictErr]W[Reli]: It has two parts. First, it assigns all new
tasks to the most reliable worker in the task categories. Second, it assigns the task of
maximum average prediction error of all its predicted values to the most reliable
worker in the task category.

• T[N]W[Reli]+T[MaxEntropy]W[Reli]: It has two parts. First, it assigns all new
tasks to the most reliable worker in the task categories. Second, it assigns the task of
maximum Entropy on the posterior variance to the most reliable worker in the task
category.

• T[N]W[Reli]+T[MaxDiff]W[Reli] (ActivePMFv1): It has two parts. First, it
assigns all new tasks to the most reliable worker in the task categories. Second, it
assigns the task of maximum difference between its observed values and its predicted
values to the most reliable worker in the task category.

• T[N]W[Reli]+T[MaxDiff]W[N]+T[MaxDiff]W[Reli] (ActivePMFv2): It has
three parts. First, it assigns all new tasks to the most reliable worker in the task
categories. Second, for all new workers, it assigns the task of maximum difference
between its observed values and its predicted values to a randomly selected new
worker. Third, it assigns the task of maximum difference between its observed values
and its predicted values to the most reliable worker in the task category.

To compare the prediction quality of our method ActivePMFv2, we use theMean Abso-
lute Error (MAE) and the Root Mean Squared Error (RMSE) as the comparison metrics.
MAE and RMSE are defined in Eq. (27):

Yuen et al. Big Data Analytics (2016) 1:14 Page 22 of 29

MAE =
∑

i,j |ri,j − r̂i,j|
N

,RMSE =
√∑

i,j
(
ri,j − r̂i,j

)2

N
, (27)

where ri,j denotes the rating that indicates the extent of the favor of task j for worker i,
r̂i,j denotes the predicted rating, and N is the total number of testing ratings.

Performance comparison

To show the prediction performance improvements of ActivePMFv2, we first com-
pare ActivePMFv1 [15] with PMF with various active learning approaches and different
active sampling heuristics, where Probabilistic Matrix Factorization (PMF) [12] is the
state-of-the-art approach for recommendation systems. Next, we compare our proposed
ActivePMFv2 with ActivePMFv1.
From our dataset, we randomly select 80 % of ratings as training data (20 % as initial

training set + 60 % as active set), and leave the remaining 20 % as prediction perfor-
mance testing. The procedure is carried out 10 times independently, and we report the
average values in this paper. For the value transformation, we have 10,411 approved tasks
(value transformed to 5), 9,399 submitted tasks (value transformed to 3) and only 5
rejected tasks (value transformed to 4). Most rejected tasks are already removed in our
dataset. In the comparison, we set θW = θV = θC = 0.00004, set θU = 0.0001 and θD = 0.01.
The MAE results and the RMSE results are reported from Tables 4, 5, 6, 7, 8 and 9. MAE
measures the average magnitude of the errors in predicted values; while RMSE gives a
relative high weight to large errors.

In Tables 4 and 5, we compare among PMF with three sampling heuristics on select-
ing tasks, which are Maximum Difference (ActivePMFv1), Maximum Prediction Error
and Maximum Entropy. The performance results of the three approaches are similar
when the number of selected samples is small. However, as the number of selected sam-
ples increases, MaximumDifference approach (ActivePMFv1) outperforms the other two
approaches.
In Tables 6 and 7, we compare among PMF with different active learning approaches on

task selection and worker selection. When the number of selected samples is very small,

Table 4MAE comparison among various active sampling heuristics in PMF (A smaller MAE means a
better performance)

PMF with active sampling heuristics

No. of selected
samples

T[N]W[Reli]+
T[MaxDiff]W[Reli]
(ActivePMFv1)

T[N]W[Reli]+
T[MaxPredictErr]W[Reli]

T[N]W[Reli]+
T[MaxEntropy]W[Reli]

1000 0.3658 0.3658 0.3658

2000 0.2778 0.2778 0.2778

3000 0.1955 0.1955 0.1955

4000 0.1473 0.1443 0.1482

5000 0.1151 0.1184 0.1262

6000 0.0977 0.0977 0.1100

7000 0.0945 0.0839 0.0963

8000 0.0899 0.0664 0.0809

9000 0.0652 0.0479 0.0536

10000 0.0334 0.0340 0.0366

11000 0.0176 0.0221 0.0237

Yuen et al. Big Data Analytics (2016) 1:14 Page 23 of 29

Table 5 RMSE comparison among various active sampling heuristics in PMF (A smaller MAE means a
better performance)

PMF with active sampling heuristics

No. of selected
samples

T[N]W[Reli]+
T[MaxDiff]W[Reli]
(ActivePMFv1)

T[N]W[Reli]+
T[MaxPredictErr]W[Reli]

T[N]W[Reli]+
T[MaxEntropy]W[Reli]

1000 0.7101 0.7101 0.7101

2000 0.6097 0.6097 0.6097

3000 0.5110 0.5110 0.5110

4000 0.4164 0.4364 0.4583

5000 0.3180 0.4025 0.4409

6000 0.2621 0.3626 0.4300

7000 0.2566 0.3411 0.4195

8000 0.2563 0.2862 0.3856

9000 0.2054 0.2342 0.3023

10000 0.1259 0.1975 0.2390

11000 0.0880 0.1532 0.1786

assigning tasks to workers randomly gives the best performance in both the MAE results
and the RMSE results. However, as the number of selected samples increases, assigning
new tasks in the first stage can greatly improve the performance in both the MAE results
and the RMSE results. Compared with random selection on task and worker to the PMF
learning model (i.e. T[Rand]W[Rand]), ActivePMFv1 can greatly improve both MAE and
RMSE performance.
In Tables 8 and 9, we compare our proposed ActivePMFv2 with ActivePMFv1. The per-

formance results of the three approaches are similar when the number of selected samples
is small. However, as the number of selected samples increases, ActivePMFv2 outper-
forms ActivePMFv1 in both MAE and RMSE results. Compared with ActivePMFv1, the
MAE results and the RMSE results of ActivePMFv2 are improved up to 29 % and 35 %
respectively.
In Table 10, we compare the partial update part of our online-updating approach with

the full retrain on ActivePMFv2 model learning. The prediction quality of ActivePMFv2
with partial update (threshold t = 0.001) approximates to that of ActivePMFv2 with full
retrain, but the average runtime on model update per work done of ActivePMFv2 with
partial update (threshold t = 0.001) is greatly reduced by 12 % compared with that of
ActivePMFv2 with full retrain.
By using the batch update method, the average runtime onmodel update per work done

can be further reduced. In Table 11, we compare the batch update part of our online-
updating approach with the full retrain on ActivePMFv2 model learning. As batch size
increases, both the MAE results and the RMSE results also increase, while the average
runtime on model update per work done decreases significantly. For instance, compared
with full retrain, when batch size is 500 with partial update (threshold t = 0.001), the
average runtime on model update per work done is reduced by 99.6 % (decreases from
3.839 min to 0.017 min), but both the MAE results and the RMSE results increases by
several times. On the other hand, compared with full retrain, when batch size is 10 with
partial update (threshold t = 0.001), the average runtime on model update per work done
is reduced by 82.4 % (decreases from 3.839 min to 0.675 min), while theMAE result is just
increased by 22.4 % (increases from 0.0156 to 0.0191) and the RMSE result is only slightly

Yuen et al. Big Data Analytics (2016) 1:14 Page 24 of 29

Ta
b
le

6
M
A
E
co
m
pa

ris
on

am
on

g
va
rio

us
ac
tiv
e
le
ar
ni
ng

ap
pr
oa
ch
es

in
PM

F
(A

sm
al
le
rM

A
E
m
ea
ns

a
be

tt
er
pe

rfo
rm

an
ce
)

PM
F
w
ith

ac
tiv
e
le
ar
ni
ng

ap
pr
oa
ch
es

N
o.

of
se
le
ct
ed

sa
m
pl
es

T[
N
]W

[R
el
i]+

T[
M
ax
D
iff
]W

[R
el
i]

(A
ct
iv
eP
M
Fv
1)

T[
M
ax
D
iff
]W

[R
el
i]

T[
M
ax
D
iff
]W

[R
an
d]

T[
Ra
nd

]W
[R
el
i]

T[
Ra
nd

]W
[R
an
d]

10
00

0.
36
58

0.
47
31

0.
47
28

0.
41
79

0.
36

07

20
00

0.
27
78

0.
45
79

0.
45
92

0.
35
80

0.
27

39

30
00

0.
19

55
0.
45
67

0.
45
67

0.
30
83

0.
23
40

40
00

0.
14

73
0.
43
25

0.
43
71

0.
26
42

0.
20
90

50
00

0.
11

51
0.
40
89

0.
41
22

0.
22
96

0.
18
66

60
00

0.
09

77
0.
24
27

0.
38
87

0.
19
41

0.
16
77

70
00

0.
09

45
0.
18
72

0.
26
46

0.
17
16

0.
14
35

80
00

0.
08

99
0.
13
34

0.
19
08

0.
14
47

0.
11
22

90
00

0.
06

52
0.
08
98

0.
12
14

0.
09
94

0.
07
28

10
00
0

0.
03

34
0.
03
57

0.
05
83

0.
03
94

0.
04
06

11
00
0

0.
01

76
0.
02
47

0.
03
12

0.
02
87

0.
03
88

Yuen et al. Big Data Analytics (2016) 1:14 Page 25 of 29

Ta
b
le

7
RM

SE
co
m
pa

ris
on

am
on

g
va
rio

us
ac
tiv
e
le
ar
ni
ng

ap
pr
oa
ch
es

in
PM

F
(A

sm
al
le
rM

A
E
m
ea
ns

a
be

tt
er
pe

rfo
rm

an
ce
)

PM
F
w
ith

ac
tiv
e
le
ar
ni
ng

ap
pr
oa
ch
es

N
o.
of

se
le
ct
ed

sa
m
-

pl
es

T[
N
]W

[R
el
i]+

T[
M
ax
D
iff
]W

[R
el
i]

(A
ct
iv
eP
M
Fv
1)

T[
M
ax
D
iff
]W

[R
el
i]

T[
M
ax
D
iff
]W

[R
an
d]

T[
Ra
nd

]W
[R
el
i]

T[
Ra
nd

]W
[R
an
d]

10
00

0.
71
01

0.
84
07

0.
83
96

0.
77
45

0.
67

15

20
00

0.
60
97

0.
84
17

0.
84
17

0.
71
12

0.
53

55

30
00

0.
51
10

0.
84
23

0.
84
20

0.
65
78

0.
48

33

40
00

0.
41

64
0.
80
17

0.
80
89

0.
60
52

0.
45
33

50
00

0.
31

80
0.
75
97

0.
76
55

0.
56
43

0.
42
47

60
00

0.
26

21
0.
69
18

0.
72
45

0.
51
91

0.
39
78

70
00

0.
25

66
0.
60
67

0.
61
50

0.
45
01

0.
36
05

80
00

0.
25

63
0.
51
86

0.
53
81

0.
32
05

0.
29
91

90
00

0.
20

54
0.
38
99

0.
48
44

0.
29
52

0.
22
10

10
00
0

0.
12

59
0.
16
83

0.
21
39

0.
18
43

0.
15
24

11
00
0

0.
08

80
0.
12
45

0.
13
57

0.
13
42

0.
13
96

Yuen et al. Big Data Analytics (2016) 1:14 Page 26 of 29

Table 8MAE comparison between ActivePMFv2 and ActivePMFv1 (A smaller MAE means a better
performance)

No. of selected
samples

T[N]W[Reli]+T[MaxDiff]W[N]+
T[MaxDiff]W[Reli] (ActivePMFv2)

T[N]W[Reli] + T[MaxDiff]W[Reli]
(ActivePMFv1)

1000 0.3658 0.3658

2000 0.2778 0.2778

3000 0.1955 0.1955

4000 0.1052 0.1473

5000 0.1001 0.1151

6000 0.0948 0.0977

7000 0.0897 0.0945

8000 0.0879 0.0899

9000 0.0652 0.0652

10000 0.0283 0.0334

11000 0.0156 0.0176

Table 9 RMSE comparison between ActivePMFv2 and ActivePMFv1 (A smaller RMSE means a better
performance)

No. of selected
samples

T[N]W[Reli]+T[MaxDiff]W[N] +
T[MaxDiff]W[Reli] (ActivePMFv2)

T[N]W[Reli] + T[MaxDiff]W[Reli]
(ActivePMFv1)

1000 0.7101 0.7101

2000 0.6097 0.6097

3000 0.5110 0.5110

4000 0.2710 0.4164

5000 0.2594 0.3180

6000 0.2513 0.2621

7000 0.2479 0.2566

8000 0.2494 0.2563

9000 0.2030 0.2054

10000 0.1116 0.1259

11000 0.0845 0.0880

Table 10 Comparison on a Full-Retrain with Partial Update on Online-Updating Approach on
ActivePMFv2 model learning (Feature k = 20; No of Work Done = 11,000; Batch = 1)

ActivePMFv2 model MAE RMSE Avg Runtime per Work
Done (min)

Full Retrain 0.0156 0.0845 3.839

Online-Updating (Partial = 0.001) 0.0156 0.0845 3.374

Table 11 Comparison on a Full-Retrain with Batch Update on Online-Updating Approach on
ActivePMFv2 model learning (Feature k = 20; No of Work Done = 11,000)

ActivePMFv2 model MAE RMSE Avg Runtime per
Work Done (min)

Full Retrain 0.0156 0.0845 3.839

Online-Updating (Partial = 0.001; Batch = 1) 0.0156 0.0845 3.374

Online-Updating (Partial = 0.001; Batch = 10) 0.0191 0.0914 0.675

Online-Updating (Partial = 0.001; Batch = 50) 0.0313 0.1353 0.142

Online-Updating (Partial = 0.001; Batch = 100) 0.0515 0.2103 0.137

Online-Updating (Partial = 0.001; Batch = 150) 0.0768 0.2977 0.049

Online-Updating (Partial = 0.001; Batch = 200) 0.0513 0.2033 0.038

Online-Updating (Partial = 0.001; Batch = 500) 0.1022 0.3445 0.017

Yuen et al. Big Data Analytics (2016) 1:14 Page 27 of 29

increased by 8.2 % (increases from 0.0845 to 0.0914). Therefore, by adjusting the batch
size, the average runtime on model update per work done can be reduced significantly,
but only very small performance degradation is resulted. In the cases shown in Table 11,
batch size 10 is the best choice among all the listed choices.

Conclusion
In this paper, we have proposed Probabilistic Matrix Factorization with Active Learn-
ing (version 2), ActivePMFv2, on Task Recommendation framework, TaskRec, for quality
assurance in crowdsourcing systems. It first randomly assigns new tasks to the most reli-
able worker in the task categories. Second, it actively selects the most uncertain task,
and then request new workers to complete the task. Third, it actively selects the most
uncertain task, and then request the most reliable workers to complete the task for
retraining the classification model. Experimental results show that our ActivePMFv2 out-
performs ActivePMFv1, where the MAE results and the RMSE results of ActivePMFv2
are improved up to 29 % and 35 % respectively. Previous work shows that ActivePMFv1
outperforms the PMF with other active learning approaches significantly.
Moreover, we have proposed online-updating on the task recommendation model to

reduce the runtime of retraining the model. In a large-scale crowdsourcing system, it does
not make sense to retrain the model from scratch whenever a worker of large profile com-
pletes a task, because the performance improvement by retraining the model in the case is
tiny but the cost of retraing model is high. Moreover, when a large number of workers are
working in the crowdsourcing system at the same period of time, the computational com-
plexity is very high if the model is retrained after each worker completes a task. The larger
the profile of a worker (or task) is, the less important is retraining its profile on each new
work done. In case of the worker (or task) having large profile, our online-updating algo-
rithm retrains the whole feature vector of the worker (or task) and keeps all other entries
in the matrix fixed. Our online-updating algorithm runs batch update to reduce the run-
ning time of model update. Experiment results show that our online-updating algorithm
is accurate in approximating to a full retrain of the learning model while the average run-
time of model update for each work done is reduced by more than 80 % (decreases from
a few minutes to several seconds).

Acknowledgements
This research was in part supported by grants from the National Grand Fundamental Research 973 Program of China (No.
2014CB340405), the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK
413212), and Microsoft Research Asia Regional Seed Fund in Big Data Research (Grant No. FY13-RES-SPONSOR-036).

Authors’ contributions
All authors made substantial contributions to conception and design of the work. MC carried out experiments, data
analysis and data interpretation. Besides, MC participated in drafting and revising the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 November 2015 Accepted: 14 September 2016

References
1. Howe J. The rise of crowdsourcing. Wired. 2006;14(6).
2. Howe J. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. New York: Crown Business;

2008.
3. Yuen MC, King I, Leung KS. A survey of crowdsourcing systems. In: SocialCom ’11: Proceedings of The Third IEEE

International Conference on Social Computing. Boston: IEEE Computer Society; 2011. p. 766–73.

Yuen et al. Big Data Analytics (2016) 1:14 Page 28 of 29

4. Yuen MC, Chen LJ, King I. A survey of human computation systems. In: CSE ’09: Proceedings of IEEE International
Conference on Computational Science and Engineering. Vancouver: IEEE Computer Society; 2009. p. 723–8.
doi:10.1109/CSE.2009.395.

5. Amazon Mechanical Turk. https://www.mturk.com/.
6. CrowdFlower. http://crowdflower.com/.
7. Taskcn. http://www.taskcn.com/.
8. TopCoder. http://www.topcoder.com/.
9. Allahbakhsh M, Benatallah B, Ignjatovic A, Motahari-Nezhad HR, Bertino E, Dustdar S. Quality control in

crowdsourcing systems: Issues and directions. IEEE Internet Computing. 2013;17(2):76–81. doi:10.1109/MIC.2013.20.
10. Ipeirotis PG, Provost F, Wang J. Quality management on amazon mechanical turk. In: HCOMP ’10: Proceedings of

the ACM SIGKDD Workshop on Human Computation. New York: ACM; 2010. p. 64–7.
11. Karger DR, Oh S, Shah D. Iterative learning for reliable crowdsourcing systems. In: Advances in Neural Information

Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a
Meeting Held 12–14 December 2011, Granada; 2011. p. 1953–1961. http://papers.nips.cc/paper/4396-iterative-
learning-for-reliable-crowdsourcing-systems.

12. Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In: NIPS ’07: Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems. Taipei: Curran Associates, Inc.; 2007.

13. Rendle S, Schmidt-Thieme L. Online-updating regularized kernel matrix factorization models for large-scale
recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems. RecSys ’08. New
York: ACM; 2008. p. 251–8. doi:10.1145/1454008.1454047. http://doi.acm.org/10.1145/1454008.1454047.

14. Karimi R, Freudenthaler C, Nanopoulos A, Schmidt-Thieme L. Active learning for aspect model in recommender
systems. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, Part of
the IEEE Symposium Series on Computational Intelligence 2011, April 11–15, 2011, Paris; 2011. p. 162–7.
doi:10.1109/CIDM.2011.5949431. http://dx.doi.org/10.1109/CIDM.2011.5949431.

15. Yuen MC, King I, Leung KS. Probabilistic matrix factorization with active learning for quality assurance in
crowdsourcing systems. In: ICWI 2015: Proceedings of The IADIS International Conference WWW/Internet 2015.
Greater Dublin; 2015.

16. Stewart O, Lubensky D, Huerta JM. Crowdsourcing participation inequality: a scout model for the enterprise
domain. In: Proceedings of the ACM SIGKDD Workshop on Human Computation. HCOMP ’10. New York: ACM; 2010.
p. 30–3. doi:10.1145/1837885.1837895. http://doi.acm.org/10.1145/1837885.1837895.

17. Ross J, Irani L, Silberman MS, Zaldivar A, Tomlinson B. Who are the crowdworkers?: shifting demographics in
mechanical turk. In: CHI EA ’10: Proceedings of the 28th of the International Conference Extended Abstracts on
Human Factors in Computing Systems. New York: ACM; 2010. p. 2863–872. doi:10.1145/1753846.1753873. http://
doi.acm.org/10.1145/1753846.1753873.

18. Chilton LB, Horton JJ, Miller RC, Azenkot S. Task search in a human computation market. In: HCOMP ’10:
Proceedings of the ACM SIGKDD Workshop on Human Computation. New York: ACM; 2010. p. 1–9.
doi:10.1145/1837885.1837889. http://doi.acm.org/10.1145/1837885.1837889.

19. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer. 2009;42(8):30–7.
doi:10.1109/MC.2009.263.

20. Yang S, Ye M. Global Minima Analysis of Lee and Seung’s NMF Algorithms. Neural Process Lett. 2013;38(1):29–51.
doi:10.1007/s11063-012-9261-x.

21. Yang S, Yi Z. Convergence Analysis of Non-Negative Matrix Factorization for BSS Algorithm. Neural Process Lett.
2010;31(1):45–64. doi:10.1007/s11063-009-9126-0.

22. Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems;
2008.

23. Zhou TC, Ma H, King I, Lyu MR. Tagrec: Leveraging tagging wisdom for recommendation. In: Proceedings of the
2009 International Conference on Computational Science and Engineering - Volume 04. Washington: IEEE
Computer Society; 2009. p. 194–9. doi:10.1109/CSE.2009.75. http://dl.acm.org/citation.cfm?id=1632710.1633781.

24. Allahbakhsh M, Benatallah B, Ignjatovic A, Motahari-Nezhad HR, Bertino E, Dustdar S. Quality control in
crowdsourcing systems: Issues and directions. IEEE Internet Computing. 2013;17(2):76–81. doi:10.1109/MIC.2013.20.

25. Organisciak P, Teevan J, Dumais ST, Miller RC, Kalai AT. A crowd of your own: Crowdsourcing for on-demand
personalization. In: Proceedings of the Seconf AAAI Conference on Human Computation and Crowdsourcing,
HCOMP 2014, November 2–4, 2014, Pittsburgh; 2014. http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/
paper/view/8972.

26. Organisciak P, Teevan J, Dumais S, Miller RC, Kalai AT. Matching and grokking: Approaches to personalized
crowdsourcing. In: Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI’15. Pittsburgh:
AAAI Press; 2015. p. 4296–302. http://dl.acm.org/citation.cfm?id=2832747.2832856.

27. Ambati V, Vogel S, Carbonell J. Towards task recommendation in micro-task markets. In: AAAI ’11: Proceedings of
The 25th AAAI Workshop in Human Computation. Pittsburgh: AAAI Publications; 2011.

28. Lin CH, Kamar E, Horvitz E. Signals in the silence: Models of implicit feedback in a recommendation system for
crowdsourcing. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City; 2014. p. 908–15. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8425.

29. Atlas L, Cohn D, Ladner R, El-Sharkawi MA, Marks II RJ. Training connectionist networks with queries and selective
sampling. Adv Neural Inf Process Syst. 1990;2:566–573.

30. Lewis DD, Gale WA. A sequential algorithm for training text classifiers. In: SIGIR ’94: Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin: Springer; 1994.
p. 3–12.

31. Scheffer T, Decomain C, Wrobel S. Active hidden markov models for information extraction. In: IDA ’01: Proceedings
of the 4th International Conference on Advances in Intelligent Data Analysis. Cascais: Springer; 2001. p. 309–18.

32. Culotta A, McCallum A. Reducing labeling effort for structured prediction tasks. In: AAAI ’05: Proceedings of the 20th
National Conference on Artificial Intelligence - Volume 2. Pittsburgh: AAAI Press; 2005. p. 746–51.

http://dx.doi.org/10.1109/CSE.2009.395
https://www.mturk.com/
http://crowdflower.com/
http://www.taskcn.com/
http://www.topcoder.com/
http://dx.doi.org/10.1109/MIC.2013.20
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://dx.doi.org/10.1145/1454008.1454047
http://doi.acm.org/10.1145/1454008.1454047
http://dx.doi.org/10.1109/CIDM.2011.5949431
http://dx.doi.org/10.1109/CIDM.2011.5949431
http://dx.doi.org/10.1145/1837885.1837895
http://doi.acm.org/10.1145/1837885.1837895
http://dx.doi.org/10.1145/1753846.1753873
http://doi.acm.org/10.1145/1753846.1753873
http://doi.acm.org/10.1145/1753846.1753873
http://dx.doi.org/10.1145/1837885.1837889
http://doi.acm.org/10.1145/1837885.1837889
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1007/s11063-012-9261-x
http://dx.doi.org/10.1007/s11063-009-9126-0
http://dx.doi.org/10.1109/CSE.2009.75
http://dl.acm.org/citation.cfm?id=1632710.1633781
http://dx.doi.org/10.1109/MIC.2013.20
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8972
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8972
http://dl.acm.org/citation.cfm?id=2832747.2832856
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8425

Yuen et al. Big Data Analytics (2016) 1:14 Page 29 of 29

33. Dagan I, Engelson SP. Committee-based sampling for training probabilistic classifiers. In: ICML ’95: Proceedings of
the Twelfth International Conference onMachine Learning. Tahoe City, California: Morgan Kaufmann; 1995. p. 150–7.

34. Seung HS, Opper M, Sompolinsky H. Query by committee. In: COLT ’92: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory. Pittsburgh: ACM; 1992. p. 287–94.

35. Yan Y, Rosales R, Fung G, Dy JG. Active learning from crowds. In: ICML’11: Proceedings of the 28th International
Conference on Machine Learning. Bellevue: Omnipress; 2011. p. 1161–1168.

36. Laws F, Scheible C, Schütze H. Active learning with amazon mechanical turk. In: EMNLP ’11: Proceedings of the
Conference on Empirical Methods in Natural Language Processing. Edinburgh: Association for Computational
Linguistics; 2011. p. 1546–1556.

37. Fang M, Zhu X, Li B, Ding W, Wu X. Self-taught active learning from crowds. In: ICDM; 2012. p. 858–63.
38. Fang M, Zhu X. Active learning with uncertain labeling knowledge. Pattern Recogn Lett. 2014;43:98–108.

doi:10.1016/j.patrec.2013.10.011.
39. Jung HJ, Lease M. Improving quality of crowdsourced labels via probabilistic matrix factorization. In: Human

Computation Workshop at the Twenty-Sixth AAAI Conference on Artificial Intelligence; 2012.
40. Jung HJ. Quality assurance in crowdsourcing via matrix factorization based task routing. In: International Conference

on World Wide Web 2014; 2014.
41. Yuen MC, King I, Leung KS. Taskrec: Probabilistic matrix factorization in task recommendation in crowdsourcing

systems. In: ICONIP (2); 2012. p. 516–25.
42. Yuen MC, King I, Leung KS. Taskrec: A task recommendation framework in crowdsourcing systems. Neural Process

Lett. 2015;41(2):223–38. doi:10.1007/s11063-014-9343-z.
43. Yuen MC, King I, Leung KS. Task matching in crowdsourcing. In: CPSCom ’11: Proceedings of The 4th IEEE

International Conference on Cyber, Physical and Social Computing. Boston: IEEE Computer Society; 2011.
p. 409–12.

44. Yuen MC, King I, Leung KS. Task recommendation in crowdsourcing systems. In: KDD ’12: Proceedings of ACM KDD
2012 Workshop on Data Mining and Knowledge Discovery with Crowdsourcing (CrowdKDD). New York: ACM; 2012.

45. Schnitzer S, Rensing C, Schmidt S, Borchert K, Hirth M, Tran-Gia P. Demands on Task Recommendation in
Crowdsourcing Platforms - The Worker’s Perspective. In: CrowdRec Workshop. Vienna; 2015.

46. Geiger D, Schader M. Personalized task recommendation in crowdsourcing information systems – current state of
the art. Decision Support Systems. 2014;65:3–16. doi:10.1016/j.dss.2014.05.007. Crowdsourcing and Social Networks
Analysis.

47. Aldhahri E, Shandilya V, Shiva SG. Towards an effective crowdsourcing recommendation system: A survey of the
state-of-the-art. In: SOSE. Boston: IEEE; 2015. p. 372–7. http://dblp.uni-trier.de/db/conf/sose/sose2015.html#
AldhahriSS15.

48. Dueck D, Frey BJ, Dueck D, Frey BJ. Probabilistic sparse matrix factorization. Technical report, University of Toronto.
2004.

49. NAACL 2010 Workshop. http://sites.google.com/site/amtworkshop2010/data-1.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1016/j.patrec.2013.10.011
http://dx.doi.org/10.1007/s11063-014-9343-z
http://dx.doi.org/10.1016/j.dss.2014.05.007
http://dblp.uni-trier.de/db/conf/sose/sose2015.html#AldhahriSS15
http://dblp.uni-trier.de/db/conf/sose/sose2015.html#AldhahriSS15
http://sites.google.com/site/amtworkshop2010/data-1

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Crowdsourcing systems
	Recommendation systems
	Task recommendation in crowdsourcing systems
	Active learning
	Active learning for task recommendation in crowdsourcing systems to achieve quality assurance
	Task recommendation for new workers in crowdsourcing systems
	Dynamic-updating crowdsourcing systems for real-world scenarios
	Our motivation

	Task recommendation framework
	Probabilistic Matrix Factorization on Task Recommendation Framework
	Worker-task preferring matrix factorization
	Worker-category preferring matrix factorization
	Task-category grouping matrix factorization
	A unified matrix factorization for TaskRec

	ActivePMFv2 - active learning for concurrent selection of task and worker
	Random new task selection for reliable worker
	Uncertainty sampling for task selection for randomly selected new worker
	Uncertainty sampling for task selection for reliable worker

	Online-updating on ActivePMFv2 - online-update on active learning for concurrent selection of task and worker
	Partial update
	Batch update
	General update problem
	Complexity analysis

	Experimental analysis
	Description of dataset
	Evaluation metrics
	Performance comparison

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

