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Abstract

Neuromorphic Engineering has emerged as an exciting research area, primarily owing
to the paradigm shift from conventional computing architectures to data-driven,
cognitive computing. There is a diversity of work in the literature pertaining to
neuromorphic systems, devices and circuits. This review looks at recent trends in
neuromorphic engineering and its sub-domains, with an attempt to identify key
research directions that would assume significance in the future. We hope that this
review would serve as a handy reference to both beginners and experts, and provide a
glimpse into the broad spectrum of applications of neuromorphic hardware and
algorithms. Our survey indicates that neuromorphic engineering holds a promising
future, particularly with growing data volumes, and the imminent need for intelligent,
versatile computing.
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Background
Of late, increasing data volumes have posed a challenge to computing systems in terms of
their scalability, particularly those that rely on intensive computation. The key challenge
has been to handle the data volumes in such systems, owing to their complex, asyn-
chronous and power-drawing nature [1]. Neuromorphic engineering presents itself as a
possible, potential and promising solution to problems of this nature [2, 3]. The broad
spectrum of algorithms, devices, circuits and systems that are inspired by the working of
mammalian neural systems constitutes of neuromorphic engineering.
To motivate the context of this article, Fig. 1 presents a graph showing the number of

research publications and patents in the domain of neuromorphic engineering over the
last ten years. These are clearly indicative of a growing trend in favor of research and
developments in neuromorphic hardware, which form the impetus for reviewing research
in this domain.
In this review, we look at recent work in the neuromorphic engineering domain in

order to obtain a holistic view on research directions being pursued, while also being
able to infer possible outcomes and future directions. Neuromorphic engineering has
evolved significantly since it was first conceived by Mead [4]. In this review, we largely
refer to very recent works with an aim to discern recent trends in the domain. A summary
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Fig. 1 Publications and patents in neuromorphic engineering: Based on data collected over the last ten years
generated from Scopus using the search term “neuromorphic”

of research directions in neuromorphic engineering along the dimensions representing
neuromorphic circuits, devices and systems, respectively, is illustrated in Fig. 2, along
with references pertaining to the specific works that have been cited in our review. All
discussions henceforth are restricted primarily to the aforementioned time period.
There have been several recent review articles in the literature on neuromorphic

engineering. A review of methods, issues and challenges in neuromorphic engineer-
ing was presented by Ahmed et al. [5], that provides a primer to the domain. It also
highlights challenges and open research areas. A comprehensive tutorial by Rajendran
et al. [6] details algorithms, devices and systems, while emerging memory techniques
have been discussed in [7]. DeSalvo et al. [8] present large-scale energy efficient neu-
romorphic systems based on resistive memory technologies, as well as for low-power
embedded devices [9]. Research directions in applications pertaining to vision, auditory
and olfactory applications have been discussed by Vanarse et al. [10].
The rest of the review is organized as follows. Section “Algorithms” discusses

recent algorithms developed in the neuromorphic engineering domain. This is followed
by a discussion of hardware implementations in Section “Hardware”, which includes
neuromorphic devices and circuits. We then discuss recent applications in Section
“Recent applications”. Finally, conclusions and future outlook are presented in Section
“Conclusions and future outlook”.

Algorithms
Several machine learning algorithms dealing with big data have evolved till date that har-
ness the compute power of server class machines for optimization [11]. Though offline
storage space is often abundant, it is the complexity of the approaches employed in such
systems, both in storage and time, that has become crucial to their viability. Newer tech-
niques, for example those that use stochastic approximations to learning algorithms allow
us to deal with big data. These have allowed us to simulate approaches in tractable time,
given the luxury of heavy computational resources. The important challenge that still
needs to be addressed is the feasibility in hardware implementation of these algorithms
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Fig. 2 Directions in neuromorphic engineering: This figure categorizes research papers published in 2015
into algorithms, circuits, devices and systems, based on the nature of the primary contribution. The reader
can view this figure in the supplementary material (Additional file 1) provided with the manuscript to click on
the hyperlinks and navigate to the corresponding reference in the bibliography section [141–147]

and approaches, that is eventually critical for realizing practical applications, such as on
embedded platforms. The storage and computational capacity available on such platforms
is limited, hence the algorithms need to have a low computational complexity, that trans-
lates to low-power requirements in hardware. This is where research in neuromorphic
engineering seeks to provide new directions.
The quest for modelling algorithms that mimic, and eventually better the decision-

making ability of the human brain has been a significant research thrust since recent
times. This has been challenging not only because of the complex architecture of the
brain, but also because this requires a diverse inter-disciplinary approach combining
biomedical and engineering sciences. Progress in areas of research such as artificial intel-
ligence and machine learning have been able to achieve this to some extent. For instance,
of late the evolution of deep learning approaches has led to development of vision sys-
tems which can scale to large datasets. However, the computational requirements of these
architectures is a luxury not available on hardware platforms. Conventional architectures
based on the Von Neumann model were based on the principle that data moved between
storage and memory for processing. However, the growing size of datasets has made this
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model infeasible andmaximizingmemory-processor co-localization is needed. A possible
solution lies in working towards computationally efficient learning architectures which
can have sparse representations, hence being efficiently implementable for practical appli-
cations. This fuels the development of newer algorithms for neuromorphic computing. A
few significant developments in neuromorphic engineering are summarized in Fig. 3.

Datasets

A challenge for the works in this domain has also been the availability of datasets. To this
end, Orchard et al. [12] have worked towards converting conventional static datasets to
neuromorphic datasets, that not only maintains their compatibility with existing vision
systems for benchmarking performance, but also involves “creation of information” which
is required for realizing the true benefit of neuromorphic systems. Tan et al. [13] have
detailed broader perspectives, motivation and guidelines in this direction. The challenge
in availability of datasets for closed-loop neuromorphic systems has been addressed by
Stewart et al. [14] in their work on developing benchmarks for such systems using a min-
imal solution in a physical embodiment. A visual navigation dataset for neuromorphic
systems has been developed by Barranco et al. [15]. An effort for benchmarking bio-
inspired solutions via neuromorphic architectures on parallel computing platforms has
been made by Diamond et al. [16]. Newer research directions in neuromorphic engi-
neering are majorly directed to address these issues, and we review recent trends in
neuromorphic engineering for hardware implementations in the following section.

Hardware
Neuromorphic hardware encompasses a broad spectrum, including CMOS, memristive
or special devices in combination with CMOS, DSPs, GPUs, FPGAs, accelerators and
others, as summarized in Fig. 4. We look at recent developments in these domains,
attempting to lay greater emphasis on works that look at addressing challenges presented
by the large data sizes in particular.

Digital CMOS solutions

A 65 nm CMOS neuromorphic processor has been designed for unsupervised online
learning by Seo and Seok [17] with 1.2 k digital neurons and 4.7 k latch-based synapses.
A CMOS motion sensor for biologically motivated expansion/contraction has been
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Fig. 4 Summary of neuromorphic hardware

developed by Chiang et al. [18] which has been found to be suitable for applications
such as robotic movement. Knag et al. [19] developed an ASIC with a computer-vision
accelerator for a sparse-coding neural net to learn and extract features from images and
video.

Accelerators

Several neuromorphic accelerators have also been designed; a comparison of them with
machine learning approaches has been presented by Du et al. [20]. Chen et al. [21] present
a low area (3.02mm2) and power (485mW ) neuromorphic accelerator for implementation
of deep and convolutional neural networks. Darwin [22], by Shen et al., is a neuromor-
phic hardware co-processor for spiking neural networks on 180nm CMOS technology.
NS23 by Shahsavari [23] is a scalable spiking neural network simulator with memris-
tors for computer vision tasks. Conti et. al. [24] develop a low-power parallel accelerator
called the PULP (Parallel processing Ultra-Low Power platform) for kernel based image
processing and vision tasks. Mahajan et al. [25] develop TABLA, a framework to gener-
ate accelerators for machine learning algorithms via stochastic approximations for their
FPGA realization. A reconfigurable computing accelerator for various neural network
topologies has been developed by Liu et al. [26].
PuDianNao [27] by Liu et al. is a neuromorphic accelerator which can run seven

machine learning algorithms, viz. k-means, k-nearest neighbors, naive bayes, support vec-
tor machines, linear regression, classification trees and deep neural networks. Bojnordi
et al. [28] develop a memristive Boltzmann machine for large scale combinatorial opti-
mization and deep learning. They demonstrate their accelerator on the graph partitioning
and boolean satisfiability problems, and obtain 57× higher performance and 25× lower
energy. Neuromorphic accelerators for mobile platforms were presented by Kim et. al.
[29] with speedups ranging from 23–126 % and power reduction of upto 22 % by using
inter and intra neuron parallelism.

GPUs and DSPs

The growth in volumes of data has also propelled investigation into neuromorphic archi-
tectures for Graphics Processor Units (GPUs). Though tractable processing speedup has
been achieved [30, 31], large memory requirements present a challenge [32]. In this
context. Garcia et al. [33] developed a low-memory requiring system using an evo-
lutionary algorithm for configuration selection and validated their system on optical
flow benchmarks. Carlson et al. [34] presented a simulation environment for large-
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scale spiking neural nets with evolutionary parameter tuning which harnessed the
processing power of GPUs. More recently, Cheung et al. [35] developed “NeuroFlow”,
a scalable platform for spiking neural nets on FPGA. Their system could simulate
upto 400,000 neurons in real-time with a speedup of 2.83 times than that of GPUs.
Liu et al. [36] present a optical flow sensor inspired by biological approaches which com-
bines a silicon retina vision sensor with a DSP microcontroller.With recent trends in
large-scale machine learning moving towards algorithms requiring heavy computational
power, one can expect further developments in this direction gaining significance in the
future.

FPGA

Yi et al. [37] presented a FPGA based encoder and reservoir design for neuromorphic
processors. INsight by Chung et. al. [38] is an energy-efficient architecture for large-scale
neural networks, which obtains an accuracy of 97.64 % on a handwritten image recog-
nition dataset. FPGAs have been used for implementation of a convolutional spiking
network for classifying musical notes by Escudero [39] as well as for biomimetic pattern
generation [40]. Feedforward neural nets have been presented by Wang et al. [41] while
spiking neural nets on FPGA have been evaluated by Rodrigues et al. [42] and Wu et al.
[43]. Neuron-astrocyte signalling has been implemented by Nazari et al. [44], image de-
warping byMolin et al. [45], event-driven vision processing by Yousefzadeh et al. [46] and
Bayesian arithmetic stochastic synthesis by Duarte et al. [47].

Non-CMOS and hybrid solutions

Principles of design for network-based neuromorphic systems have been presented by
Partzsch et al. [48]. A reconfigurable memristive dynamical system has been presented
by Bavandpour et al. [49], which can be applied to learning and dynamical systems.
Memristive crossbar circuits have also been demonstrated to be suitable for efficient neu-
ral network training by Irina et al. [50], where they show low error rates using batch
and stochastic training approaches for a handwritten digit recognition dataset. Neuro-
inspired devices have been developed for unsupervised learning by Chabi et al. [51, 52],
as well as for an inference engine by Querlioz et al. [53]. A general model for voltage-
controlled memristors has been developed by Kvatinsky et al. [54]. Further, Prezioso et al.
[55] present transistor-free metal-oxide memristor crossbars for binary image classifi-
cation using a single layer perceptron. Memristor-based self healing circuits have been
presented by Gu et al. [56]. Sampath et al. [57] present a CMOS-memristor based FPGA
architecture for memory cells.
Deep neural networks have been presented by Bichler et al. [58], with the specific focus

for development of non-volatile memories, while deep spiking nets have been discussed
by Neil et al. [59]. Goal-driven deep learning has been explored by Yamins et al. [60]. Fast
and energy-efficient neurmorphic computing by Convolutional Neural Networks [61] and
backpropagation [62] has been presented by Esser et al.
Models for large-scale spiking neural networks have been explored by Krichmar et al.

[63], Wu et. al. [64] and Wang et al. [65]; while aspects related to plasticity of such net-
works in memristive devices has been studied by Saïghi et al. [66]. Garbin et al. [67]
present phase-changememory (PCM) devices as binary probabilistic synapses in a neuro-
morphic system for visual pattern recognition. Suri et al. [68] analyze the resistance-drift
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effect in PCMs, which have also been used to develop a large scale neural network
by Burr et al. [69] and Boybat et al. [70]. Online gradient descent training has been
implemented using memristor-based neural networks by Soudry et al. [71]. In the context
of network-based algorithms for machine learning, neuromorphic architectures for deep
neural networks have been presented by Indiveri. [72].
Stochastic memristive synapses based on spintronics have been presented by Vincent

et al. [73, 74]. Zhang et al. [75] present a stochastic switching multi-level cell spin transfer
torque MRAM. Zhao et al. [76] develop logic fabrics using spintronics, while energy-
efficient architectures have been presented by Locatelli et al. [77]. Spintronics for low-
power computing has been discussed in detail in the tutorial by Zhang et al. [78].

Analog implementations

There have also been several hardware implementations based on memristors inde-
pendently for memories as well as in conjunction with other devices. Challenges
in designing neuromorphic analog non-volatile memories have been discussed by
Eryilmaz et al. [79], while Taha et al. [80] present the design of auto-associative memory
using a multi-valued memristive memory cell. Reliability issues faced in using non-
volatile memories as hardware synapses have been presented by Shelby et al. [81],
while large crossbar arrays have been demonstrated by Virwani et al. [82]. Analog com-
puting via multi-gate programmable resistive graphene devices has been presented by
Calayir et al. [83], while a chaos-based CMOS analog neuron has been developed by
Zhao et al. [84].
Moon et al. [85] present a PCMO (Pr0.7Ca0.3MnO3) based resistive switching analog

memory device. Mott memories have been discussed by Zhou et al. [86] The importance
of enforcing criticality as a set-point for the purpose of developing adaptive neuromorphic
hardware has been discussed by Srinivasa et al. [87]. A neuromorphic crossbar circuit
based on analog memristors has been developed by Xu et al. [88], which demonstrates
that recognition rates of upto 82.5 % on an average can be achieved. Ghaderi et al. [89]
investigate cognitive signal processing on programmable analog hardware.
Synaptic devices for visual systems using Resistive RAMs have been presented by Kang

et al. [90], while multistate registers have been developed by Patel et al. [91]. Vertical
RRAMs have been explored for cochlea and convolutional neural nets by Piccolboni [92],
while OxRAM synapses for CNNs have been presented by Garbin et al. [93]. ReRAM
devices for neuromorphic computing have been explored by Jang et al. [94], while an
artificial synapse using a memristive switch has been modelled by Wang et al. [95].
Zhang et al. [96] present an approach for energy-efficient neuromorphic computing

for stochastic learning using multiple perpendicular in-plane magnetic tunnel junctions.
Binary Conductive-Bridge RAM (CBRAM) synapses for bio-inspired computing has been
presented by Suri et al. [97, 98], while Querlioz et al. [99] discuss stochastic resonance in
an analog current-mode circuit.

Recent applications
The realm of applications for neuromorphic engineering continue to grow at an incred-
ible rate. Newer applications keep emerging, and their comprehensive review could well
be non-exhaustive. For the sake of brevity, we restrict our review to recently developed
applications.
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Applications in vision and robot control

There have been several challenges in the computer vision domain which have benefited
by the use of biologically inspired computing approaches, and hardware implementation
is imminent for their practical application. These involve tasks ranging from relatively
simpler image classification to complex tasks such as robot movement planning, object
recognition/detection, among others. Most of these involve processing of large datasets,
as image or video sequences are fairly large in size, resulting in high area and power
consumption.
A system for object detection to enhance the safety of drivers has been described byHan

et. al. [100], and achieves upto 99 % detection rate. An on-chip implementation has been
presented by Kim et al. [101], while a memristive threshold logic circuit for detecting fast
moving objects was presented byMaan et al. [102]. Event-based 3D pose estimation using
neuromorphic systems has been discussed by Valeiras et al. [103]. Event-based compu-
tation of motion flow has been presented in the work by Giulioni [104], specifically the
extraction of optical flow from a visual scene.
Neuromorphic sensors for robotic vision have been benchmarked in terms of power

consumption by Censi et al. [105] against conventional CMOS sensors, while sensors for
high speed signal estimation have been developed by Mueller et al. [106]. A visual pattern
recognition system has been developed using memristor array and CMOS neuron by Chu
et al. [107], which has been successfully demonstrated for the task of digit recognition.
Another such system by Lorenzi et al. [108] has been developed for recognition of binary
images.

Applications in biomedical and biosignal engineering

Applications for biochemical systems for DNA strain displacement have been presented
in the work by Chiang et al. [109]. Biological real-time neuromorphic system has been
found in [110]. Population coding of neural activity has been done using a Trainable
Analogue Block approach by Thakur et al. [111].
Neuromorphic hardware design has also been inspired by the motivation to model

the behavior of the human brain [112–115]. One aspect in doing this involves inves-
tigating brain signals that may be acquired by various modalities (invasive or non-
invasive) and developing systems to infer how these vary with the presented stim-
ulus, which is analogous to development of brain-computer interfaces. This involves
several challenges: the noise and non-stationarity inherent in these data acqusi-
tion modalities, the size of the datasets and the restrictions imposed by the acqui-
sition modality. These are often common to all biomedical signals acquired; and
multi-modal setups are often beneficial, but more challenging to implement on a
common hardware platform. Works in this domain include an event-based neu-
romorphic Electroencephalogram (EEG) recording system by Corradi et al. [116].
Park et al. [117] memristive synapse neural network to recognize human thoughts
corresponding to imagined speech of three vowels of the English alphabet. Scott
et al. [118] develop a framework for spatio-temporal modelling of brain data called as
NeuCube.
Recording of EEG from the ear has been facilitated by the characterization of recordings

done using this modality by Mikkelsen et al. [119]. A neuromorphic system mimick-
ing schizophrenia has been developed by Barzegarjalali [120]. The broader context of
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biosignal processing has been explored by Kudithipudi [121], where they design and
analyze a neuromemristive reservoir computing architecture for this purpose.

Applications in perception engineering

Applications based on integration with sensory modalities of humans have been widely
explored. These include applications based on tactile sensor arrays by Lee et al. [122]
and Ros et al. [123]. Corradi et al. [124] discuss directions for development of a neu-
romorphic vestibular system, while an autonomous neuromorphic cognition system has
been proposed by Chicca et al. [125]. Applications such as texture categorization using
neuromorphic inspired touch have been explored by Rongala et al. [126], while emotion
recognition has been presented by Diehl et al. [127]. This area continues to be an exciting
yet complex domain to explore, and one can envisage future research directions guided
towards these.

Other applications

A neuromorphic framework for elastic wave dynamics has been presented by Katayama
et al. [128]. Nanomorphic memristors have been used in designing neuromorphic fabric
by Manem et al. [129] that can evaluate boolean functions as well as train a perceptron
neural net for images.
A system that can classify musical notes has been presented by Cerezuela-Escudero

et al. [39] on FPGA using a convolutional spiking neural network which gave high accu-
racies even in the presence of noise. A neuromorphic approach to the cocktail party
problem implemented on FPGA has been presented by Thakur et al. [130]. Medical assis-
tive applications such as retinal implants and sensory substitution have been explored by
Gaspar et al. [131]. A neurmorphic character recognition system has been simulated by
Sheri et al. [132] using PCMOmemristors.
High speed serial interfaces have been presented in the work by Jablonski et al. [133] for

bit-serial SATA AER inter-FPGA communication. A neuromorphic system for Electronic
Design Automation (EDA) called the AutoNCS has been presented byWen et al. [134]. A
mixed-signal design for a neuromorphic analog-to-digital converter has been presented
by Xu et al. [135].
A VLSI circuit for random sampling has been presented by Chien et al. [136] for uni-

form, exponential and bimodal distributions. A neuromorphic microphone has been
incubated by Smith [137]. An authentication system accelerated by a neuromorphic hard-
ware has been presented by Suri et al. [138] using the CM1K chip. It achieves recognition
accuracy of 91 % with power requirement ranging from 487-668 μJ for training and
testing on a benchmark dataset.

Conclusions and future outlook
A consolidated summary of developments in neuromorphic devices and circuits is pre-
sented in Table 1. From among the publications considered in this review, we have
chosen those which have provided quantifiable results in terms of design area, power con-
sumption/energy dissipation and performance and have summarized the results in the
table.
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Table 1 Summary of trends in Neuromorphic Engineering

S. No. Type Area Power/Energy Performance Remarks

GPU

1 Multi-GPU, Garcia et al. [33] 3.71× speedup Motion Estimation System

Non CMOS

2 Memristive Dynamical System,
Bavandpour et al. [49]

4n memristors and no
switch for implementing
an n-cell system

Similar to Cellular Memristive Dynamical
System (CMDS)

FitzHugh-Nagumo (FHN), Adaptive
Exponential (AdEx) integrate and fire,
and Izhikevich neuron models

3 Spiking Deep Neural Nets, Indiveri
et al. [72]

cxQuad (43.79 mm2),
ROLLS (51.4mm2)

cxQuad(945uW @1.8 V), ROLLS (4
mW @1. 8V)

Upto 100 % accuracy on toy problems Event-based convolutional stage for
feature extraction connected to a
spike-based learning stage for feature
classification.

Accelerators

4 Memristive Boltzmann Machine,
Bojnordi et al. [28]

25 × lower energy compared
to multicore system, fully utilized
accelerator chip consumes 1.3W

57× higher performance compared to
multicore system

Hardware Accelerator for Combinatorial
Optimization and Deep Learning

5 Processor (PuLP), Conti et al. [24] Overall cluster area is 1.2
mm2.

Peak theoretical energy efficiency
of 211 GOPS/W, achieved upto 192
GOPS/W

Scaled over a 1× to 354× range, Parallel Ultra Low-power Processor
for ConvNet-based detector for smart
surveillance, 4 Open-RISC cores, 64
kB of L2 memory and 24 kB of TCDM
fabricated in 28nm STMicroelectronics
FD-SOI technology

6 Processor (Mobile), Kim et al. [29] Area overhead of 9 % energy-savings of 22 % Average speedups of 126 % and 23 %
over CPU and a state-of- the-art MLP
accelerator

Neural Network Accelerator for Mobile
Application Processors, applied for edge
detection

7 Memristor Based Crossbar, Liu et
al. [26]

0.943 mm2 (M-net) and
1.793mm2 (D-net)

184.2× (25.23 ×) energy saving
over MLP(AAM)

178.4 × (27.06 ×) performance speedup
over MLP(AAM)

RENO: Reconfigurable Neuromorphic
Computing Accelerator benchmarked
with Multi-layer perceptron and
Auto-associative memory

8 Accelerator for machine learning,
Liu et al. [27]

3.51mm2 596 mW 1.20 × faster than NVIDIA K20M GPU PuDianNao: A Polyvalent Machine
Learning Accelerator
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Table 1 Summary of trends in Neuromorphic Engineering (Continuation)

S. No. Type Area Power/Energy Performance Remarks

9 Hardware Co-processor, Shen et al.
[22]

5 × 5mm2 0.84 mW/MHz with 1.8 V power
supply

92.7 % classification accuracy Darwin Neuromorphic co-processor unit
for spiking and artificial neural nets

FPGA

10 Accelerator for large scale neural
networks, Chung et al. [38]

3.02mm2 485mW 117.87 × faster, and it can reduce the
total energy by 21.08 ×

For convolutional and deep neural
networks

Digital CMOS

11 CMOSMotion Sensor, Chiang et al.
[18]

4 × 4 mm2, 86.2 % fill fac-
tor

13.2 mW 6.8 % for ± X motion, 3.5 % for ± Y
motion, and 6 % for ± Z motion

Motion sensor for Z-motion
direction/velocity detection

12 ASIC Neural Network, Knag et al.
[19]

3.06 mm × 65 nm CMOS
ASIC test chip

6.67 mW for a 140 Mpixel/s
throughput at 35 MHz.

Memory bit error rate of 0.01 ASIC for image and video feature
extraction

Analog

13 Vertical Resistive RAM, Piccolboni
et al. [92]

Area gain of 3-10 98 % recognition rate For Cochlea and CNN applications

Applications

14 CMOSAnalog VLSI Circuit, Chien et
al. [136]

330 μ m × 210 μ m Theoretically linear relationship between
output ISI distribution and input current

Spike-based random sampling

15 Memristor Array+CMOS Neuron,
Chu et al. [107]

55–100 % recogntion rate based on
noise level

Digit recognition task

16 Neuromorphic Bio-amplifier, Cor-
radi et al. [116]

0.178mm2 90 μ W 96 % classification accuracy EEG bio-amplifier has a programmable
gain of 45–54 dB, with a Root Mean
Squared (RMS) input-referred noise level
of 2.1 μ V

17 Arithmetic Units, Kim et al. [148] 121 μm2 0.111 mW 0.098 % error rate Approximate adders and comparators

18 Processor + on-chip learning, Kim
et al. [101]

1.8mm2 5.7pJ/pixel classification accuracy to 90 % 256 neurons, 83K synapses for Spiking
LCA with classification for object
detection

19 Tactile Sensors for Touch ,Lee et al.
[122]

37 × 43.5 cm2 active sen-
sor area

4096 element tactile sensor array that
can be sampled at over 5 kHz

Kilohertz Kilotaxel Tactile Sensor Array for
Investigating Spatiotemporal Features
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Table 1 Summary of trends in Neuromorphic Engineering (Continuation)

S. No. Type Area Power/Energy Performance Remarks

20 RRAM Multistate Register, Lorenzi
et al. [108]

2.8–5.2 μm2 6.5 % energy reduction 40% improvement over switch-on-event
processor

Multistate register for continuous flow
multithreading

21 CM1K chip, Suri et al. [138] 668 μJ for learning and 487 μJ for
recognition, while operating at 25
MHz

91 % recognition accuracy Multi-modal authentication (person
identification) system based on
simultaneous recognition of face and
speech data

22 Switched Capacitor Circuit, Mayr
et al. [110]

600 μm × 600 μm 1.9 mW Short and Long term plasticity, 8k
synapses

Closed loop interface to in-vitro cortical
neuron cultures.
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Indiveri et al. [139] opine that future neuromorphic systems would be an integration
of research in several domains, viz. VLSI circuits, emerging VLSI technologies, con-
trol of robotic platforms, neural computation and biological, cognitive architectures. The
recent publications in this domain reviewed in this paper clearly augment this claim.With
developing systems increasing focus on handling big datasets, the use of bio-inspired algo-
rithms and architectures has become imperative, and shall certainly pave the way forward
for future research directions in neuromorphic engineering. We present an illustration of
future directions in Fig. 5.
It is clear that advances in technology are allowing for faster devices that are smaller.

The diversifying nature of progress in the neuromorphic engineering domain mandates
the urgent and strong need of standardization, benchmarking and road-mapping, pri-
marily among various design elements such as neuron blocks, weight blocks, algorithms,
communication protocols and test datasets. A look at how integration has progressed in
VLSI indicates that power consumption and interconnection complexity have become the
most critical hurdles in building larger systems on chip.
We believe that this observation holds pointers for the evolution of neuromorphic sys-

tems. In a system with N interacting modules, the data flows and interconnections tend
to grow as αN × N , or αN2. Communication, therefore, consumes more power than the
dissipation within individual modules. This is also true for the area of modules on VLSI

Present Future

E
F
F
I
C
I
E
N
C
Y

Time

Fig. 5 Future directions in Neuromorphic Engineering. (adapted from IBM research colloquia-2012, Madrid,
M. Ritter et. al.)
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systems - interconnect occupies more space than logic, and increasingly so. Devices that
consume less power are therefore more attractive; technologies that can allow intercon-
nects to scale will tend to dominate. One might expect optical interconnects to become
more pervasive. On the algorithms front, sparse representations that lead to reductions in
power and area are likely to be more favoured. Coding techniques that make communica-
tions more efficient would also be preferred [140]. The last two have a firm mathematical
basis, and one might expect to see significant developments along these lines.
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