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available at the end of the article Previous works use the alternation least squares algorithm to optimize the nonconvex

regularization. However, this algorithm has high time complexities and requires more
iterations to reach convergence, which cannot scale to large-scale matrix completion
problems. We need to develop faster algorithm to examine large amount of data to
uncover the correlations between items for the big data analytics.

Results: In this work, we adopt the randomized SVD decomposition and Nesterov's
momentum to accelerate the optimization of nonconvex matrix completion. The
experimental results on four real world recommendation system datasets show that
the proposed algorithm achieves tremendous speed increases whilst maintaining
comparable performance with the alternating least squares (ALS) method for
nonconvex (convex) matrix completions.

Conclusions: Our novel algorithm can achieve comparable performance with
previous algorithms but with shorter running time.
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Background

The fields of machine learning and mathematical programming are increasingly inter-
twined. Optimization algorithms lie at the heart of most machine learning approaches
[1] and have been widely applied in learning to rank [2, 3], clustering analysis [4], matrix
factorization [5], etc.

Matrix completion is the task of filling in the missing entries of a partially observed
matrix. Given a partially observed matrix O, matrix completion [6] attempts to recover a
low-rank matrix X that approximates O on the observed entries. This approach leads to
the following low-rank regularized optimization problem:

1
min - |Po(0 = X)f + A - rank(X), (1)

where Pg, is the projection of X;,«,, onto the observed indices 2 and otherwise zeros, and

Il - | represents the Frobenius norm of a matrix.
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Direct minimization of the matrix rank is NP-hard, and a nature convexification of
rank(X) is the nuclear norm | X||« of X. The corresponding surrogate problem can be
solved by various optimization algorithms. Candes and Recht [6] realized that convex
relaxation is the equivalent to classic semidefinite programming (SDP), where SDP com-
plexity is O (max(m, n)4). Cai et al. [7] gave a first-order method that approximately
solves convex relaxation by the singular value thresholding algorithm (SVT), which takes
o (mnz) time to solve SVD in each SVT iteration. The soft-impute algorithm utilized
a special “sparse + low-rank” structure associated with SVT to efficiently compute the
SVD with a reasonable time. The augmented Lagrangian method (ALM) provides a pow-
erful framework to solve convex problems with equality constrains. Lin et al. [8] used
ALM to solve matrix completion problems. The fixed point continuation with approxi-
mate SVD (FPCA) algorithm [9] is based on the proximal gradient with a continuation
technique to accelerate convergence. Toh and Yun [10] proposed an accelerated proximal
gradient algorithm on the balanced approach. Tomioka et al. [11] used a dual augmented
Lagrangian algorithm for matrix completion, which achieves super-linear convergence
and can be generalized to the problem of learning multiple matrices and general spectral
regularization.

The traditional nuclear norm regularization may fall short of delivering reliable
low-rank estimators with good prediction performance. Many researchers move their
strides beyond the convex /;—penalty to the nonconvex form. Mazumder et al. [12]
used MC+penalty to demonstrate the performance of the coordinate-descent algorithm.
Dimitris et al. [13] developed a discrete extension of modern first-order continuous
optimization methods to find a high-quality feasible solution. Zhang [14] proposed the
MC+ method for penalized variable selection in high-dimensional linear regression,
which is brought into a unified view of concave high-dimensional sparse estimation
procedures [15].

Previous work [16] used the alternating least squares (ALS) procedure to optimize the
nonconvex matrix completion. However, this method has high time complexities and
requires more iterations to reach convergence, which cannot meet the requirements of big
data analytics. Halko et al. [17] presented a modular framework for constructing random-
ized algorithms to compute the partial matrix decompositions. Nesterov’s momentum
[18] makes a step in the velocity direction and then makes a correction to a velocity vector
based on the new location. Nesterov’s momentum has been widely used in deep learning
[19] and signal processing [20].

In this work, we adopt the randomized SVD decomposition and Nesterov’s momen-
tum to accelerate optimization of nonconvex matrix completion. Randomized SVD
decomposition requires very few iterations to converge quickly. In addition, the pro-
posed algorithm has a low running time and fast convergence rate by Nesterov’s
acceleration. The experimental results on four real world recommendation system
datasets show that the proposed algorithm achieves tremendous speed increases
whilst maintaining comparable performance with ALS for nonconvex (convex) matrix
completions.

Our contribution is as follows: (1) we introduce Nesterov’s momentum to solve the non-
convex matrix completion problem; (2) we further adopt the random SVD decomposition
to accelerate the converge of the algorithm; (3) the experimental results on benchmark
datasets shows the effectiveness of our algorithm.
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The remainder of the paper is organized as follows: the “Background” section intro-
duces nonconvex matrix completion and the alternating least squares algorithm; the
“Nonconvex Matrix Completion by Nesterov’s Acceleration (NMCNA)" section shows
the experimental results; the “Discussion” section analyses the time complexities of
the algorithms; the “Conclusionsss” section summarizes the conclusions; and the
“Methods” gives our novel algorithm called Nonconvex Matrix Completion by Nesterov’s
Acceleration (NMCNA).

Nonconvex Matrix Completion
Nonconvex matrix completion uses nonconvex regularizers to approximate the
lo—penalty, which leads to the following nonconvex estimation problems:

min{m,n}

1 2
min - [[Po(X = V)IIF + le P(@i(X); 1), (2)
i=
where 0;(X)(i > 1) are the singular values of X and P(c;(X); A, y) is a concave penalty
function of o on [0, oo]. The parameter (%, y) controls the amount of nonconvexity and
shrinkage. For the nuclear norm regularized problem with P(c;(X); A, y) = Aoi(X), the
soft-thresholding operator gives a solution of problem (2):

$)(Z) = Udiag(si (@)V",  (s1(0))i = (0: — M)+, ®3)

where U and V is the left singular matrix and the right singular matrix of Z, ¢ is a singular
value vector of Z and A is a threshold.

For the more general spectral penalty function P(g;A,y), we obtain the following
similar result [16] as Lemma 1.

Lemma 1 Let Z = Udiag(o)VT denote the SVD of Z and Dy, denote the following
thresholding operator on the singular values of Z:

min{m,n}

Sxy (0) € argmin, Z i(ai —01)? + P(ai A, ). (4)
i=1

Then, Sy, (Z) = Udiag(sy,, (0)) vT,

By the separability of the optimization, we can see that it can be converted into the
optimization of the single variable

1
sx,y (0i) € argmin,. {2(04 —0)% + P(a; A, 7/)} . (5)

The popular nonconvex function used in the high-dimensional regression framework
includes the /,, penalty, the SCAD penalty, the MC+ penalty and the log-penalty. In this
work, we use the MC+ penalty (A > 0 and y > 1) as a representative:

A(U—%), 0<o <)y,

)\2
=, o> Ay.

P(o;h,y) = (6)

where the parameter A and y) controls the amount of nonconvexity and shrinkage.
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We can easily analyze the solution of the thresholding function induced by the MC+

penalty:
0, o <A,
Sy (0) = %, A<o <Ay, 7)
o, o > Ay.

As observed in Fig. 1, when y — 400, the above threshold operator is consistent with
the soft-thresholding operator Ac. On the other hand, the threshold operator approaches
the discontinuous hard-thresholding operator 61(c > 1) when y — 1+.

It is critical to solve the SVD efficiently. Mazumder [16] et al. used the alternating least
square (ALS) procedure to compute a low-rank SVD.

Matrix Completion with Fast Alternating Least Squares
The ALS method [21, 22] solves the following nonlinear optimization problem:

min
AWIXVJBVIXV

Po (v —a8") | 42 (J4 3+ 81). (8)

where X is a regularization parameter and Pg(X) is the projection of the matrix X on the
matrix . We call it as the maximum-margin matrix factorization (MMMTF) criterion with
nonconvex but biconvex. It can be solved with the alternating minimization algorithm.
One variable is fixed (A or B), and we wish to solve (8) for another variable (B or A). We
can easily see that this problem decouples into # separate ridge regressions. Further, we
can prove that [21] the problem (8) is equivalent to the following problem:

. 1
min - [|Po(Y — X)II% + AlIX |l 9)
Xerank(X)<r 2

where X ~ AB.
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Fig. 1 MC+ threshold operator. Curves of nonconvex penalties P(o’; A, ) with A = 2 for different y
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Algorithm 1 Soft Impute with ALS
Choose randomly k columns of a m x m orthonormal matrix to construct U,k
V=0D=I,A=UD
for (1;, y;) with the descending sequences {;}:_; and {y;}’_; do

while ratio > € do
U=UV=V,D=D
Solve (8) fixed A to obtain a solution:

BT = (D* + 1D~ 'DUTX withX = P (Y - ABT) + ABT. (10)

Compute the orthonormal subspace spanned by B:

BD = UubD*vT. (11)
B=VD
Solve (8) fixed B to obtain a solution:

AT = (D? + D) 'DVT X TwithX T = Pg (Y _ BAT) +BAT. (12)

Compute the orthonormal subspace spanned by A:

AD = UD*vT. (13)
A=UD
ration — |up?vT—ap2vT |}
o= T ey
end while
XV = UDRT
V =VR
Compute D = diag(s;,,;(0)) with Eq. (7).
end for

It is noticed that (10) or (12) are efficient sparse + low-rank representations for high-
dimensional problems, which can efficiently store and multiply the matrices. We can then
obtain the analytical solution for the linear regression problems. Comparing (8) and (9),
we can observe that X = UD?*VT = ABT with A = UD and B = VD.

Finally, we use the relative change in Frobenius norm to check for convergence

|up>vT — TV
|up2v T}
(DY) + tr (DY) — 2t (DPUTTDPVT V)

= w (DY) 1)

ration =

Results
In this section, we describe the experimental protocols and then compare the effec-
tiveness and efficiency of our proposed algorithm (NMCNA) and the ALS-convex and
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ALS-nonconvex algorithms. All algorithm are implemented in Python language with
numpy library and running on Ubuntu system 14.04.

We used four real world recommendation system datasets (as shown in Table 1) from
ml100k and ml1m provided by MovieLens ! to compare nonconvex MC+ regularization.
Every matrix item is taken from the ratings {1, 2, 3,4, 5}.

For performance evaluation, we use root mean squared error as follows:

RMSE =/ IPa(Y — O)I: /1921, as)

where Y and O are the true values and predicted ones, respectively.

For all three settings above, we fix A; = [|[Pq(Y)|| and A5p = 0.001 - A;. We choose
10 y-values in a logarithmic grid from 10° to 1.1. We let the true ranks be taken from
(3,5, 10,20, 30, 40, 50}.

From Fig. 2, we observed that a moderate y value will obtain the best generalization
performance.

Figure 3 shows the variations of the test RMSE with the training RMSE results. The x-
axis is the training RMSE, and the y-axis the test RMSE in each subfigure. The rows and
columns correspond to the ranks and the datasets.

Figure 4 shows that the running time varies with the iteration times. It is noted that our
proposed algorithm runs faster than the ALS-convex and ALS-nonconvex algorithms.

Discussion

In Fig. 2, it is more obvious for the large rank k = 50 that the choice y = 80 achieves the
best test RMSE with 35 iterations for the ml-100k/ua dataset. Similar results also hold for
the rank k = 3.

We can observe from Fig. 3 that the proposed algorithm can converge rapidly, although
it has a high training and test RMSE from the beginning. In the end, comparable perfor-
mance is achieved with ALS-convex and ALS-convex algorithms. The minimum RMSE
value does not decrease with increasing ranks.

Figure 4 shows that our algorithm is 18 times faster than other two algorithms on the
ml-1m/ra.train and ml-1m/rb.train datasets.

According to the discussion on the ALS algorithm in [21], the total cost of an iteration
for computing SVD is O(2r|Q| 4+ mk? + 3nk® + k3).

The randomized SVD procedure [17] in the proposed algorithm requires the computa-
tion of Y*Y*TR (line 5 in Alg. 3), where Y*T R can be computed as

Table 1 Descriptions of the datasets

Dataset #users #movies #(train items) #(test items)
ml-100k/ua 943 1682 90,570 9430
ml-100k/ub 943 1682 90,570 9430
ml-Tm/ra 6040 3952 939,809 60.400
ml-1m/rb 6040 3952 939,809 60.400

The details of the datasets used in experiments
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Fig. 2 The test RMSE and the parameter y for different ranks (left: k = 3 and right: k = 50) on the ml-100k/ua
dataset. The x-axises are the iteration times and the y-axises are the test RMSE
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Fig. 3 Training and Test RMSE curve on four datasets for three algorithms. The x-axis is the training RMSE and
y-axis is the test RMSE
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Fig. 4 Running time of three algorithms on four datasets. The x-axises are the iteration times and the y-axises
are the running time

Y*TR = Po(Y — X*)R+ (1 + 6)XR — 6X'R
= Po(Y — X*)R + (1 + 0)Udiag(s;, (0) VIR

— 0U'diag(s, ,, (0))V'"R (16)

Assume that X and X’ have ranks r and 7/; then, it will take O((r + r')|2|) time for
constructing P (Y — X*) and O(|2|k) for computing Po (Y — X*)R time. Further, the cost
of computing U (diag(sy,, () (VIR)) is O(mrk + nrk); then, the total cost is

O((r+7 +0IQ+ (' +r)(m+ n)k). (17)

Although we do not judge the performance advantages of random SVD over ALS for
one iteration, the random SVD is shown to require fewer iterations (< 5) than ALS in

these experiments.

Page 8 of 12



Jin et al. Big Data Analytics (2018) 3:11 Page 9 of 12

Conclusions

This paper proposes a novel algorithm for nonconvex matrix completion. The proposed
algorithm uses randomized SVD decomposition with few iterations. Nesterov’s acceler-
ation further decreases its running time. The experimental results on four real-world
recommendation system datasets show that the approach can accelerate the optimiza-
tion of nonconvex matrix problems but with comparable performance to ALS algorithms.
In the future, we will focus on the validation of other nonconvex functions for matrix

completion problems.

Methods
Nonconvex Matrix Completion by Nesterov’s Acceleration (NMCNA)
Although soft-impute is a proximal gradient method that can be accelerated by Nesterov’s
acceleration, the special sparse+low-rank structure will be lost in the ALS algorithm [23].
In this work, we resorted to the randomized partial matrix decomposition algorithm [17]
to compute SVD.

Now, we present Nesterov’s acceleration for the proposed nonconvex matrix comple-
tion problem. First, define the following sequences:

14,/14+4c? )
_— i>1,

¢ = 2 (18)
1, i=01.
¢ —1

0; = (19)
Ci+1

Given the singular value decomposition of X and X: X = /X V7T (T is diagonal) and
X' = U'S'V'T, the proximal gradient algorithm uses the proximal mapping

X = Udiag(sy,, (o) V7, (20)
X' = U'diag(s} , (0)V'7, (21)

where s, (0) is computed by (7) and X (X’) is the current (previous) predict matrix. By

Nesterov’s acceleration, we have

X* = (1+0)X — 60X’ (22)
Y* = Po(Y — X*) + X*. (23)

Random SVD Factorization

The problem of computing a low-rank approximation to a given matrix can be divided
into two stages: construction of a low-dimensional subspace and computation of the
factorization with the restriction to the subspace.



Jin et al. Big Data Analytics (2018) 3:11 Page 10 of 12

Algorithm 2 Soft-Impute by Nesterov’s Acceleration

Generate a random 7 X k matrix R
Set the precision € = 10*
Q = powermethod(Y, R, €)
(U,D,V']=svd (QTZ)
Uu=u, b=D, V=V
c=c =1
for (1, ;) with the descending sequences {A;}‘!_; and {y;}!_; do
X*=@Q+6)-upvl —9.u'DVv'T
Y* = Po(Y — X*) + X*
R=gqr(V)
u=u, V=V, D=D
Q = powermethod(Y*, R, €)
(U, diag (0),V]=svd (QTY*)

U=Qu
D = diag (S;Li,},i (a))
d=c
c= 14++/1+4c?
= 2
end for

Algorithm 3 Power method (powermethod) for computing orthonormal subspace
Given Z, Rand €
Z' = ZR
Q=qr(2)
fori=1,2,---,qdo
Z' =27"Q
Q =qr(Z)
error = ||Q — Qll3
Q=0Q

if error < € then

break
end if
end for

return Q

We require a matrix Q here as an approximate basis (see Alg. 3) for the range of the

input matrix Z
Z~QQ'z, (24)

where Q has orthonormal columns.

In the simplest form, we directly compute the QR factorization of ¥ = ZQ = QR,
where 2 is a random matrix. Thus, Q is an orthonormal base of the range of Z. However,
the singular spectrum of the input matrix may decay slowly. Therefore we alternatively
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compute the QR factorization of (ZZ T)qZQ = QR, where g < 5 usually suffices in
practice.
Given the orthonormal matrix Q we compute the SVD of B = Q7 Z as follows:

B=Qlz=u=zVvT, (25)

then with (24), we immediately obtain the approximate SVD of Z:

Z~QQ'z=QB=(QU)xzVv". (26)

Endnote

Uhttps://grouplens.org/datasets/movielens/.

Abbreviations

ALM: Augmented Lagrangian method; ALS: Alternative least squares; FPCA: Fixed point continuation with approximate
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