
Big Data AnalyticsPadillo et al. Big Data Analytics             (2019) 4:2 
https://doi.org/10.1186/s41044-018-0039-7

RESEARCH Open Access

Evaluating associative classification
algorithms for Big Data
Francisco Padillo1, José María Luna1,3 and Sebastián Ventura1,2,3*

*Correspondence: sventura@uco.es
1Department of Computer Science
and Numerical Analysis, University
of Cordoba, Cordoba, Spain
2Faculty of Computing and
Information Technology, King
Abdulaziz University, Jeddah, Saudi
Arabia
3Knowledge Discovery and
Intelligent Systems in Biomedicine
Laboratory, Maimonides Biomedical
Research Institute of Cordoba,
Cordoba, Spain

Abstract
Background: Associative Classification, a combination of two important and different
fields (classification and association rule mining), aims at building accurate and
interpretable classifiers by means of association rules. A major problem in this field is
that existing proposals do not scale well when Big Data are considered. In this regard,
the aim of this work is to propose adaptations of well-known associative classification
algorithms (CBA and CPAR) by considering different Big Data platforms (Spark and Flink).

Results: An experimental study has been performed on 40 datasets (30 classical
datasets and 10 Big Data datasets). Classical data have been used to find which
algorithms perform better sequentially. Big Data dataset have been used to prove the
scalability of Big Data proposals. Results have been analyzed by means of
non-parametric tests. Results proved that CBA-Spark and CBA-Flink obtained
interpretable classifiers but it was more time consuming than CPAR-Spark or
CPAR-Flink. In this study, it was demonstrated that the proposals were able to run on
Big Data (file sizes up to 200 GBytes). The analysis of different quality metrics revealed
that no statistical difference can be found for these two approaches. Finally, three
different metrics (speed-up, scale-up and size-up) have also been analyzed to
demonstrate that the proposals scale really well on Big Data.

Conclusions: The experimental study has revealed that sequential algorithms cannot
be used on large quantities of data and approaches such as CBA-Spark, CBA-Flink,
CPAR-Spark or CPAR-Flink are required. CBA has proved to be very useful when the
main goal is to obtain highly interpretable results. However, when the runtime has to
be minimized CPAR should be used. No statistical difference could be found between
the two proposals in terms of quality of the results except for the interpretability of the
final classifiers, CBA being statistically better than CPAR.
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Introduction
Classification set of rules to form an accurate classifier [1], ARM aims at describing a
dataset by means of reliable associations among patterns [2]. Associative Classification
(AC) [3] come into being as the combination of the two previous fields as a way of building
an interpretable and accurate classifier by means of association rules [4].
When building accurate classifiers, many different techniques have been proposed in

literature such as those based on rules [5], decision trees [1] or support vector machine
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[6], to list a few. Many of these techniques achieve great results, but just some of them
are able to build interpretable classifiers which are essential in many fields as health-care
[7] or biology [8]. In general, those approaches based on rules or trees are able to obtain
highly interpretable models. However, decision trees suffer from a problem of adapt-
ability since a small change in the input data may produce large changes in the model
[5]. Other approaches do not consider the whole dataset to mine rules but small sam-
ples of data and, therefore, the final classifier could not be representative of the overall
trends [9]. Unlike these approaches, in AC the training phase is about searching for hid-
den knowledge by means of association rule mining algorithms and then a classification
model (classifier) is constructed after sorting the knowledge in regards to certain criteria
as well as pruning useless and redundant knowledge [4]. AC is often capable of building
robust classifiers since it obtains any association rule within the dataset that can bemissed
by other classification systems [10]. Moreover, the rules produced in AC are easy to
understand and they even could be manually updated by the end-user, unlike neural net-
work and probabilistic approaches, which produce classification models that are hard to
understand [11].
The first algorithm proposed in the AC field is known as CBA [4]. It works in two

phases and the first one generates association rules by means of an exhaustive search
algorithm [2]. Then, in a second phase, it ranks the discovered rules to form the final
classifier. Even when this proposal obtains very interpretable and accurate classifiers, it
has some problems since the runtime could take more than expected or some minority
classes could be ignored. Aiming at solving these drawbacks, the same authors proposed
CBA2 [12] as an improvement of the previous proposal to avoid ignoring the minority
class by using multiple class minimum support. Other approaches like CMAR [12] try to
solve the same problem by considering multiple rules to predict unseen examples as well
as speeding up the runtime by means of complex data structures. Even all these proposals
work pretty well in terms of both accuracy and efficiency, CPAR [13] was proposed as a
combination of classic approaches of rule induction with features of AC obtaining both
an improvement on accuracy and runtime ignoring, in part, the interpretability.
As it is described, interesting AC algorithms have been proposed in literature, obtaining

good results in interpretability, predictive power and efficiency. However, with the recent
need for dealing with bigger amounts of data, these proposals are becoming insufficient.
Big Data is a new buzzword used to refer to the techniques used to face up the problems
arising from the management and analysis of these huge quantities of data [14]. Applying
existing AC approaches on such high dimensional datasets produce some limitations in
terms of both computational complexity and memory requirements [15]. Hence, it is vital
to propose new approaches able to scaled out [16] and to obtain results, in a reasonable
quantum of time, when they are applied to Big Data.
At this point, the goal of this work is to propose two different methods based on tra-

ditional algorithms for AC (CBA and CPAR) through emerging paradigms of distributed
computing (Spark and Flink). In this regard, CBA and CPAR were selected since, accord-
ing to some authors [4, 12, 13, 17], these are the most interesting ones based on accuracy
and interpretability. CBA is considered as the algorithm that obtains the most inter-
pretable classifiers, whereas CPAR is able to obtain very accurate classifiers with accuracy
values, in average, greater than those obtained by CBA [13]. In the experimental stage,
these two proposals have been compared to existing AC approaches to demonstrate that
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both are the most interesting ones. In this work, the two proposed methods have been
designed on both Apache Spark and Apache Flink, and these two platforms were selected
since they are the most representative within the Big Data field [18]. Then, these two
approaches have been compared to current state-of-art of associative classification in Big
Data. It should be noted that the two proposals, that is, CBA (based on Spark and Flink)
and CPAR (based on Spark and Flink), return exactly the same results as their sequen-
tial versions (CBA [4] and CPAR [13]) and the main difference lies in the runtime and
the ability to be run on Big Data. The two proposals have been analyzed on 40 different
datasets (30 classical datasets and 10 Big Data datasets), proving that they scale well even
for file sizes up to 200 GBytes. Classical datasets were considered to find the algorithm
or algorithms that best perform among sequential approaches. Such best algorithms were
parallelized using Apache Spark and Flink, and considering 10 well-known Big Data
datasets. Additionally, in order to prove the scalability of Big Data approaches three well-
knownmetrics (scale-up, speed-up and size-up) have been considered to analyze how the
algorithms behave on different number of nodes and data sizes [19]. Finally, it is impor-
tant to remark that all the experimental results have been validated by non-parametric
statistical tests.
The rest of the paper is organized as follows. “Methods” section presents the most rel-

evant definitions and related work; “Results” section describes the proposed algorithm;
“Discussion” section presents the datasets used in the experiments and the results; finally,
some concluding remarks are outlined in “Conclusion” section.

Preliminaries
In this section, the associative classification task is first introduced in a formal way. Then,
different paradigms for distributed computing are described.

Associative classification

The task of associative classification (AC) was proposed as a combination of two well-
known tasks in the data mining fields, namely association rule mining and classification,
as a way of building a interpretable and accurate classifiers [4]. In this regard, this section
formally describes these two different tasks and, finally, it formally introduce the AC
problem.
Let us first introduce association rule mining (ARM) in a formal way by considering a

dataset comprising a set of transactions T = {t1, t2, ..., tm} and a set of items or features
I = {i1, i2, ..., in}. Here, each transaction tj comprises a subset of items {ik , ..., il}, 1 ≤ k,
l ≤ n. An association rule is formally defined [2] as an implication of the form X → Y
where X ⊂ I , Y ⊂ I , and X ∩ Y = ∅. The meaning of an association rule is that if the
antecedent X is satisfied for a specific transaction tj, i.e. X ⊂ tj, then it is highly probable
that the consequent Y is also satisfied for that transaction, i.e. Y ⊂ tj. The frequency of
an itemset X ⊂ I , denoted as support(X), is defined as the number of transactions from
T that satisfies X ⊂ tj, i.e. |{∀tj ∈ T : X ⊆ tj; tj ⊆ I}|. In the same way, the support of an
association ruleX → Y is defined as the number of transactions from T that satisfies both
X and Y, i.e. |{∀tj ∈ T : X ⊂ tj,Y ⊂ tj; tj ⊆ I}|. Additionally, the strength of implication
of the rule, also known as confidence, is defined as the proportion of transactions that
satisfy both X and Y among those transactions that contain only the antecedent X, i.e.
confidence(X → Y ) = support(X → Y )/support(X) [20].
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The classification task, on the contrary, can be formally defined by considering a set of
items or features I = {i1, i2, ..., in} and a variable of interest or class C including a number
of values. Here, a dataset is formed as a set of transactions T = {t1, t2, ..., tm} and each
transaction tj comprises a subset of items {ik , ..., il}, 1 ≤ k, l ≤ n and a specific value for
the class C. The task of classification could be formally defined as predicting the class
value of a l-dimensional input vector S such as S = {s1, s2, ..., sl} where ∀s ∈ S : s ⊆ I .
This task of mapping a set of input variables to an output variable is done by means of
functions or rules [5].
AC is an special kind of classification where rules previously discovered by ARM are

used to build an accurate classifier, that is, able to predict unseen examples. Aiming at
obtaining this kind of classifiers many different methodologies have been proposed [10],
and most of them obtain association rules by means of exhaustive search algorithms [2].
CBA [4] and its improved version CBA2 [17] are two examples of AC algorithms that first
mine association rules by means of exhaustive search algorithms. However, this is a major
drawback when large datasets are required to be analysed since for a dataset comprising
k single items, a total of 3k − 2k+1 + 1 rules can be computed and saved in memory. To
solve this issue, additional approaches, e.g. CMAR [12], have been proposed which are
mainly based on novel data structures that avoid the generation of any candidate. Another
example is CPAR [13], which combines the advantages of AC with traditional rule induc-
tion algorithms. While these algorithms work well for not so big datasets, they cannot be
used in Big Data due to the associated complexity [21]. Under these circumstances, new
forms of building this type of classifiers from a Big Data perspective is an interesting and
emerging topic [22], which has not received yet the needed attention.

Big Data architectures: Apache Spark, Apache Flink and its origins

MapReduce [16] is a recent paradigm of distributed computing in which programs are
composed of two main stages, map and reduce. In the map phase each mapper processes
a subset of input data and produces a set of 〈k, v〉 pairs. Finally, the reducer takes this new
list to produce the final values. To clarify this idea, let us analyze a social network in which
it is required to know the number of friends in common that each pair of friends have.
Assume that friends are stored as Person →[List of friends]. Thus, the list of friends would
be something like: A → BCD, B → ACDE, C → ABDE, D → ABCE, and E → BCD. For
every friend in the list of friends, the mapper will output a 〈k, v〉 pairs, where the key k is
a friend along with the person (e.g. AB). The value v will be the list of friends (e.g. BCD).
The key will be sorted so that the friends are in order, causing all pairs of friends to go
to the same reducer. Before we send these 〈k, v〉 pairs to the reducers, we group them by
their keys and get (AB) → (ACDE)(BCD). The reduce function will simply intersect the
lists of values and output the same key with the result of the intersection. For example,
the previous reduce ((AB) → (ACDE)(BCD)) will output (AB) : (CD) which means that
friends A and B have C and D as common friends.
Hadoop [23] is the de facto standard for MapReduce applications. Even when Hadoop

implements these paradigms efficiently, its major drawback is it imposes an acyclic data
flow graph, and there are applications that cannot be modeled efficiently using this kind
of graph such as iterative or interactive analysis [18]. Besides, MapReduce is not aware of
the total pipeline of map plus reduce steps so it cannot cache intermediate data in mem-
ory for faster performance. Instead, it flushes intermediate data to disk between each step.
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To solve these downsides, Apache Spark has risen up for solving all the deficiencies of
Hadoop, introducing an abstraction called Resilient Distributed Datasets (RDD) to store
data in main memory and a new approach using micro-batch technology. Unfortunately,
Spark does not support native iterations, which means that its engine does not directly
handle iterative algorithms [24]. In order to implement an iterative algorithm, a loop
needs to repeatedly instruct Spark to execute the step function and manually check the
termination criterion, significantly increasing overhead for large-scale iterative jobs. This
issue is unlikely to have any practical significance on operations unless the use case
requires low latency where delay of the order of milliseconds can cause significant impact.
Furthermore, Flink includes its own memory manager reducing the time required by
garbage collector, whereas Spark addresses this issue later with Tungsten optimization
project [25]. In this sense, Apache Flink has been proposed to face the problems of Spark
and to address the problem of streaming applications differently and in a more native
way (vs the micro-batch methodology of Spark). By the time Flink came along, Apache
Spark was already the most suitable framework for fast, in-memory Big Data analytic
requirements for a number of organizations around the world. This made Flink appear
superfluous, but in the recent years the attention on this new platform has risen up
considerably.

Methods
In this section the two proposals are fully described. Even though the algorithms have
been run on both Spark and Flink, the explanation is in common since the philosophy
is the same and the unique difference is the platform. Then, In the experimental stage,
these two proposals have been compared to existing AC approaches to demonstrate that
both are the most interesting ones. The experimental set-up is also fully described in this
section including which comparisons have been performed.

Aim of this work and our proposals

The goal of this work is to propose two different methods based on traditional algorithms
for AC, that is, CBA and CPAR, through emerging paradigms of distributed computing
(Spark and Flink). In this regard, CBA and CPAR were selected since, according to
some authors [4, 12, 13, 17], these are the most interesting ones based on accuracy and
interpretability. CBA is considered as the algorithm that obtain the most interpretable
classifiers, whereas CPAR is able to obtain very accurate classifiers with accuracy values,
in average, greater than those obtained by CBA [13]. In this work, the two proposedmeth-
ods have been designed on both Apache Spark and Apache Flink, and these two platforms
were selected since they are the most representative within the Big Data field [18].

CBA-Spark/Flink

This proposal is based on the well-known CBA [4] algorithm1, which makes use of
two different stages. Firstly, the Apriori [2] algorithm is used to find association rules.
Secondly, an accurate classifier is built using the previously mined rules.
Sequential algorithm. Aiming at easing the comprehension of the parallel approach,

the original algorithm is briefly described through an example. First, association rules
are extracted by means of the Apriori algorithm, only considering those rules hav-
ing a support and a confidence values higher than a threshold. Let us considered the
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well-known weather dataset (the class attribute determines whether someone will play
tennis or not) and the rules: outlook = rainy → play = no, outlook = sunny →
play = yes, windy = no → play = yes, windy = no AND outlook = sunny →
play = yes, windy = no AND outlook = rainy → play = no, windy = no AND
outlook = rainy → play = yes. Second, an accurate classifier is built by considering the
previously mined rules. In this regard, rules are sorted according to their support, con-
fidence and size [4]. However, sorting is not enough since the final classifier might be
formed of many and repetitive rules: windy = no → play = yes and windy = no AND
outlook = sunny → play = yes may be fired by any example that satisfies windy = no.
In this regard, the final step in the algorithm is to remove those rules with a low level of
precedence and not covering at least one example on the training dataset.
Generation of association rules. The goal of this phase is to obtain those rules whose

frequency of occurrence is greater than a threshold value predefined by the user. In this
sense, an iterative algorithm based on the well-knownApriori [2] is considered. An impor-
tant problem of this kind of methodologies is the extremely high number of rules that
may be produced at the same time. To deal with this issue, an option is not to create
the whole lattice for each transaction but the l-sized sub-lattice each time, requiring a
predefined number of iterations. In this regard, both the memory requirements and the
computational time can be reduced. Furthermore, when the l-sized rules are generated,
only the supersets from l-1-sized frequent rules are used as a seed, enabling to speed up
the runtime. The explanation behind this fact is that any rule can be only frequent if all
its sub-rules are also frequent [2].
This phase has been developed with a classical MapReduce application includ-

ing three different types of processes: 1) driver: it is the main program when run-
ning the algorithm; 2) mappers: they aim at processing an input and producing
a set of 〈k, v〉 pairs; 3) reducers: they receive the previously set of pairs in order
to aggregate and filter the final results. Each of these steps are fully described as
follows:

• Step 1. The driver reads the database from disk and save it in the main memory of the
cluster. Either using Spark or Flink, the driver splits the dataset in data subsets in
order to ease both the data access and data storage.

• Step 2. Each time this phase (see Listing 1) is performed a MapReduce procedure is
run. The proposed model works by running a different mapper for each specific
sub-database and, then, the results are collected and filtered in a reducer phase.
These two sub-steps are described as follows.

- Step 2.1. Mappers phase. Each mapper is responsible for mining the complete
set of rules of size l for its sub-database. A set of 〈k, v〉 pairs are produced
where k represents a set of items and class values, whereas v denotes an array
of values (support of antecedent, support for each class value, and support of
the rule considering each possible class value). All the rules produced in this
step do not have any sub-set of infrequent itemsets, since the l -1-itemsets are
used to avoid infrequent patterns to be generated (see Listing 1, line 3 in
mapper function).

- Step 2.2 Reducers phase. The rules for each data subsets are collected,
aggregated in order to obtain the support value for the whole dataset (see
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Listing 1, lines 2 to 4 in reducer function), and filtered (see Listing 1, line 5 in
reducer function) according to a minimum threshold for their support.

• Step 3. After the MapReduce phase is carried out, the best rules of size l are reported
to the driver.

Listing 1 CBA-Spark/Flink - Generation of association rules - Step 2
functionmapper(instance, l, l-1-sizedRules)
1: candidates ← generateRulesSizeL(l, instance)
2: for all candidate in candidates do
3: if candidate is not a subset of any l-1-sizedRules then
4: supports ← calculateSupports(candidate, instance)
5: emit(candidate, supports) // Emit 〈k, v〉 pair
6: end if
7: end for

end function
function reducer(candidate, supports)
1: finalSupports ← {supportAntecedent: 0, supportConsequent: 0, supportRule: 0}
2: for all support in supports do
3: finalSupports ← finallSupports + support
4: end for
5: if finalSupports.supportRule ≥ threshold then
6: emit(candidate, supports) // Emit 〈k, v〉 pair
7: end if

end function

It should be noted that all these steps are repeated until l is equal to the number of the
items in data. These l-sized rules are kept in a pool of rules, known as R, which will be
used in the next phase, that is, the generation of the final classifier.
Building the final classifier. The goal of this phase is to build the final classifier by

means of the previously obtained rules. Let R be the set of generated rules and D the
training dataset. The basic idea is to choose a set of high accurate rules from R to cover
D. The final classifier is therefore formed as a list [ r1, r2, ..., rn, default_class] where ri ∈ R
and default_class is only used when none of the rules is fired. This phase is tough since a
huge number of combinations are possible so a heuristic is usually used to alleviate this
problem.
Four different steps are considered to build the final classifier:

• Step 1. Rules are sorted according to a precedence criterion. Given two rules, ri and
rj, ri has a higher precedence than rj:

- The confidence of ri is greater than that of rj.
- The confidence values are the same for both rules but the support of ri is

greater than that of rj.
- The confidence and support values for both rules are the same, but ri was first

generated, that is, size(ri) < size(rj) where size returns the number of
attributes in each rule.

• Step 2. After sorting, a MapReduce is required to select candidate rules.
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- Step 2.1. Mappers phase. The input of the mappers is a chunk of the dataset
and R. The goal is to iterate on each instance of the dataset to find the rule
with the highest precedence that it will be fired given that example (see
Listing 2). In order to do so, for each instance two rules are selected: 1) cRule:
the rule with the highest precedence that correctly classify the instance; 2)
wRule: the rule with also the highest precedence that wrongly classify the
instance. When cRule has a higher precedence than wRule is trivial that cRule
will be fired, thus it will classify this instance. However, when the contrary
happens the problem is more complex and more analysis is required (these
rules will be re-studied in the next step of the algorithm). When all the
instances for the chunk are processed two kind of 〈k, v〉 pairs are generated:
1) cRule type. For those rules which were selected at least one time as cRule a
〈k, v〉 pair is emitted, where k is the rule and v is an array containing two
values: QFlag if it had at least one time more precedence than its wRule;
classCasesCovered an array containing the number of cases per classes which
were covered by this rule.
2) wRule type. For those rules which were selected at least one time as wRule
and they had a higher precedence than its respective cRule a 〈k, v〉 pair is
emitted, where k is the rule and v is an array containing three values: Instance,
cRule and wRule.

- Step 2.2. Reducers phase. They receives the two types of 〈k, [ v0, ..., vn] 〉 pairs
generated in the previous step. In function of the type an action is done:
1) cRule type: they are sent directly to driver, without performing any action.
They are saved in the driver as Q.
2) wRule type. The overall count is calculated aggregating the results for each
mapper. In case of properties as classCasesCovered the values are added and
for binary values, the OR operator is applied. Then, they are sent to the driver
saving it in A.

• Step 3. Next, those complex cases which could not be studied in the previous step,
are now examined. In this regard, for each case where wRule has a higher precedence
than cRule is checked if this very wRule has been used as cRule for other instances
(that is, QFlag is enabled) in that case is clear that wRule will cover this instance. For
the another case, it is required to find all the rules with higher precedence than cRule
and they also have to wrongly classify this instance. These returned rules are those
that may replace cRule to cover this instance because they have higher precedences,
thus in this sense the counter of covered classes are updated and they are saved. As
these rules are candidate of being in the final classifier.

• Step 4. All the previously generated rules are sorted in function of the precedence of
the rules. Then, all the rules which do not cover at least one instance are removed.
Finally, add one by one those rules to the final classifier until the point where adding
a new rule does not improve the overall performance but they worsen.

Finally, the computational complexity of this algorithm is the same as the original
approach [4]. As it could be appreciated, this algorithm is computationally expensive
since it is based on Apriori [2]. Let us consider N as the number of input transactions,
M is the threshold and k the number of unique elements. To generate rules of size i it
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Listing 2 CBA-Spark/Flink - Building the final classifier - Step 2
functionmapper(chunk, R)
1: finalResult ← generateCustomStructure(R)
2: for instance in chunk do
3: cRule ← correctClassifyRule(R, instance)
4: wRule ← wronglyClassifyRule(R, instance)
5: finalResult[cRule.id].classCasesCovered[instance.class]++
6: finalResult[cRule.id].UFlag ← true
7: if cRule � wRule then
8: finalResult[cRule.id].QFlag ← true
9: else

10: emit(〈 cRule, [instance, cRule, wRule] 〉) // Emit 〈k, v〉 pair
11: end if
12: end for
13: emit(finalResult) // Emit each result as one 〈k, v〉 pair
end function

requiresO
(
ki

)
, and for calculating support it requiresO(N). Therefore, time complexity

for algorithm would beO
[
(k + N) + (

k2 + N
) + ...

] = O
(
MN + 1−kM

1−k

)
.

CPAR-Spark/Flink

This proposal is based on the well-known CPAR [13] algorithm, which also works in two
different stages. Firstly, a greedy approach is considered in the rule generation phase,
which is much more efficient than generating all candidate rules. Secondly, CPAR repeat-
edly searches for the current best rule and removes all the data records covered by the
rule until there is no uncovered data record.
Sequential algorithm. CPAR2 extracts rules by means of a greedy algorithm inspired

in the well-known FOIL algorithm [13]. FOIL repeatedly searches for the current best
rule and removes all the positive examples covered by such rule until all the positive
examples in data are covered. To facilitate understanding let suppose the well-known
weather dataset, where the rule with a highest gain is outlook = sunny → play = yes.
Then, two items windy = no and temperature = hot are found to have similar gain. The
rules outlook = sunny AND windy = no → play = yes and outlook = sunny AND
temperature = hot → play = yes are therefore generated. This process will be repeated
until all the instances are covered. Finally, to predict an unseen example the best k rules
for each class is used, with the following procedure: 1) select any rule that satisfies the
example; 2) from the rules selected in step 1, take the best k rules for each class; and 3)
compare the average expected accuracy of the best k rules for each class and choose the
class with the highest expected accuracy as the predicted class.
Generation of association rules. This phase is responsible for obtaining class asso-

ciation rules. It makes use of an adaptation of FOIL which has proved to obtain good
results [13]. This algorithm makes use of a unique iteration on the dataset to build a
special data structure which enables to reduce the number of times that a dataset has
to be read. Then, the rules could be extracted directly using this data structure. At this
point, and similarly to the other proposal (CBA-Spark/Flink), this first phase has been
developed with a classicalMapReduce framework by including four different types of pro-
cesses: 1) driver: it is the main program when running the algorithm; 2) mappers: they
aim at processing an input and producing a set of 〈k, v〉 pairs; 3) reducers: they receive
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the previously set of pairs in order to aggregate and filter the final results; 4) a set of asso-
ciation rules are produced in a greedy fashion. Each of these steps are fully described as
follows:

• Step 1. The driver reads the database from disk and save it in the main memory of the
cluster. Either using Spark or Flink, the driver splits the dataset in data subsets in
order to ease both the data access and data storage.

• Step 2. Building a data structure to synthesize the dataset. Unlike the previous
approach where an iterative approach was used, in this case a unique MapReduce
phase is used. The goal is to calculate the frequency of occurrence or support value
for each attribute=value combined with one value of the class, that is, itemsets of size
2 where one of the items is the class and the other is an item of the form
attribute=value. Therefore, for binary classification two parallel MapReduce would
be required (one for positive and another for negative). In multi-class problems the
process is repeated for each class value, considering the current value as positive and
the rest of values as negative. This step is split in two different sub-parts as follows.

- Step 2.1. Mapper phase (see Listing 3 mapper function). Each mapper
analyzes a data subset and produces a set of 〈k, v〉 pairs where k is an
expression of the form attribute=value; and v is an array of the form
(instance.id, instance.weight, instance.class), where instance.id is a unique
identifier for this instance; instance.weight is the weight associated to this
instance (by default is 1); instance.class is the class for this instance. It should
be noted that the number of mappers for this phase is limited to the size of the
data, and its calculation is delegated to the platforms (Spark/Flink).

- Step 2.2. Reducer phase (see Listing 3 reducer function). The set of 〈k, v〉 pairs
is aggregated in the reducers to produce the final count for both the positive
and negative classes of the instances for each attribute=value. Each reducer
returns its result to the driver, which saves all the final results in
simplified_dataset. As the number of produced 〈k, v〉 are very large a unique
reducer could be act as a bottleneck. To avoid this situation, several reducers
are considered to achieve a higher level of parallelism. In concrete, the meta-
data (attributes and values included in data) is used to calculate the number of
reducers as numberOfReducers = ∑n

i=0 numberOfValuesForAttribute(i),
where n is the number of attributes; numberOfValuesForAttribute(i) returns
the number of different values which could take the attribute i.

• Step 3. Next, the dataset is split in subparts, one for each value of the class. It is
required as a previous step of generating rules, since it will be used combined with
the simplified_dataset to avoid to iterate several times in the original dataset. In case
of binary classification, two new sub-sets of the original dataset would be created (see
lines 3 to 4, Listing 3, driver function). Furthermore, the total weight for positive
instances is calculated by the function totalWeightPositiveInstances (see line 5,
Listing 3, driver function), having into account that each instance has a value of
weight equal to 1 by default. In multi-class problems the problem of calculating the
total weight would be repeated for each class value, iterating on the values and
considering the current value as positive and the rest of values as negative.
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Listing 3 CPAR-Spark/Flink - Generation of association rules
functionmapper(instance)
1: for all attributeAndValue in instance do
2: emit(attributeAndValue, (instance.id, instance.weight, instance.class)) // Emit 〈k, v〉 pair
3: end for

end function
function reducer(attributeAndValue, values)
1: result ← {positiveInstances: ∅, negativeInstances: ∅}
2: for all value in values do
3: // value has the form (instance.id, instance.weight, instance.class)
4: if value.class is positive then
5: result.positiveInstances ← result.positiveInstances ∪ (value.id, value.weight)
6: else
7: result.negativeInstances ← result.negativeInstances ∪ (value.id, value.weight)
8: end if
9: end for

10: emit(attributeAndValue, result) // Emit 〈k, v〉 pair
end function
function driver(dataset,minGain)
1: R ← ∅
2: A ← MapReduce to synthesize dataset
3: P ← Filter dataset to select only positive instance from dataset
4: N ← Filter dataset to select only negative instance from dataset
5: originalTotalWeight ← totalWeightPositiveInstances(simplified_dataset)
6: while totalWeightPositiveInstances(simplified_dataset) < δ · originalTotalWeight do
7: N ′ ← N ,P′ ← P, simplified_dataset′ ← simplified_dataset
8: r ← emptyRule
9: while (attributeValue = bestAttributeValue(simplified_dataset)).gain < minGain do

10: r ← r ∪ attributeValue
11: for all t in P′ ∪ N ′ not satisfying r‘s body do
12: remove t from P′orN ′
13: recalculate simplified_dataset according to the removal of t
14: end for
15: end while
16: R ← R ∪ r
17: for all t in P satisfying r‘s body do
18: t.weight ← α · t.weight
19: change simplified_dataset according to the weight decreased
20: end for
21: end while
end function

• Step 4. Find a set of rules in a greedy fashion by means of the previously obtained data.
Each rule is initialized with an empty set (see line 8, Listing 3, driver function), and the
best attribute=value is selected from simplified_dataset using the gain measure. This
measure is calculated as gain(rule) = |P|

(
log |P∗|

|P∗|+|N∗| − log |P|
|P|+|N |

)
, where N and

P is the number of negative instances and positive instances respectively; N∗ and P∗
are the number of both the number negative and positive instances satisfying the rule
body. When the best attribute=value is selected, it is added to the current rule r (see
line 10, Listing 3, driver function), then the temporal P′, N ′ and simplified_dataset′

are updated considering that this new rule covers some instances (see lines 11 to 14,
Listing 3, driver function) and the process of adding a new attribute=value is
repeated until the gain of the new attribute=value is smaller than a threshold
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minGain. Once the rule is completely formed, it is added to the final set of rules (see
line 16, Listing 3, driver function), and P and simplified_dataset are updated
considering this new rule (see lines 17 to 20, Listing 3, driver function). The process is
repeated until a sufficient number of positive instances have been covered by means
of the threshold δ. All the rules generated are saved in R. It generates rules while the
number of positive instances in the remaining dataset are larger than a threshold (δ).

Building the final classifier. The aim of this step is to build the final classifier by means
of the previously obtained rules. Before anything, it is required to calculate the power of
predictability of the rules. In this sense, the Laplace error estimate is used to calculate the
accuracy of rules, which is defined as LaplaceAccuracy = nc+1

ntot+k , where k is the number of
classes, ntot is the total number of examples satisfying the antecedent of the rule, among
which nc examples belong to the predicted class value c.
When an unseen example has to be predicted, the best k rules of each class are used for

prediction following the next procedure. First, it selects all the rules whose antecedents
are satisfied by this unseen example. Second, from the previously selected rules, it selects
the best k rules for each class value. Finally, it compares the average expected accuracy
of the best k rules of each class value and the class value with the highest expected accu-
racy is selected. Finally, it should be considered that multiple rules are used in prediction
because two reasons: 1) the accuracy of rules cannot be precisely estimated; 2) it cannot
be expected that any single rule can perfectly predict the class value of every example.
Moreover, only the best k rules are used instead of all the rules since there are different
number of rules for different class values.
Finally, the computational complexity of this algorithm is the same as the original

approach [13]. During the process of building a rule, it removes in simplified_dataset each
example at most once. Moreover, it takes O(k) time to remove an example from it. So it
takes O(nk) time to build a rule, thus the final time complexity of calculating the ruleset
is measured asO(nk|R|).

Experimental set-up

This section describes both the experimental set-up (algorithms and datasets) and the
achieved results. The goal of this experimental analysis is four-fold:

1 To compare the quality of the predictions with other well-known algorithms taken
from the AC field.

2 To analyze the interpretability of the results with regard to other methodologies.
3 To compare the efficiency of these approaches which obtain the best possible

results in terms of both quality (accuracy and kappa) and interpretability.
4 To analyze the scalability in Big Data environments when different parallel

implementations are considered.

All the results obtained in the experimental analysis are available at http://www.uco.es/
kdis/cba-cpar/.

Design of the experimental study and criteria for selecting the best algorithms

In this analysis, 40 real-world datasets widely used by researchers in AC and Big Data
datasets have been considered. Table 1 shows the number of both attributes and instances,
they have been categorized into two different groups: classical datasets and Big Data

http://www.uco.es/kdis/cba-cpar/
http://www.uco.es/kdis/cba-cpar/
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Table 1 List of datasets (in alphabetical order) used for the experimental study

Datasets Attributes Instances

Classical datasets

Appendicitis 7 106

Australian 14 690

Banana 2 5300

Breast 9 277

Cleveland 13 297

Contraceptive 9 1473

Flare 11 1066

German 20 1000

Hayes-roth 4 160

Heart 13 270

Iris 4 150

Lymphography 18 148

Magic 10 19,020

Mammographic 5 830

Monk-2 6 432

Mushroom 22 5644

Page-blocks 10 5472

Phoneme 5 5404

Pima 8 768

Post-operative 8 87

Saheart 9 462

Spectfheart 44 267

Splice 60 3190

Tae 5 151

Tic-tac-toe 9 958

Titanic 3 2201

Vehicle 18 846

Wine 13 178

Winequality-white 11 4898

Wisconsin 9 683

Big Data datasets

Census 40 299,285

CoverType 54 581,012

Hepmass 28 10,500,000

Higgs 28 11,000,000

Poker 10 1,025,010

Kddcup1999 41 4,898,431

KDD99_2 41 4,856,151

KDD99_5 41 4,856,151

Record-Linkage 12 5,749,132

Sussy 18 5,000,000

datasets. All of them are publicly available at the KEEL [26] repository. For these datasets,
the number of attributes ranges from 2 to 60, the number of class values varies between
2 to 23, and the number of instances ranges from 87 to 11,000,000. A 10-fold stratified
cross-validation has been used, and each algorithm has been executed 5 times. Thus, the
results shown for each dataset are the average results obtained from 50 different runs.
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Additionally, 12 different algorithms have been considered to be analyzed, which are
based on different methodologies such as exhaustive search from ARM, bio-inspired
methodologies, Big Data approaches as well as classic methodologies. All these algo-
rithms, which aremainly used by researchers in the AC field, have been selected according
to their efficiency and significance within the predictive tasks. It is important to note that
the configurations for these algorithms are those provided by the authors in their original
works. Each of these algorithms have been categorized as follows:
Classical algorithms

• CBA [4]. It is the first algorithm that was proposed in the AC field. It is based on a
well-known algorithm from ARM known as Apriori [2].

• CBA2 [17]. It is an improvement of CBA that considers multiple class minimum
support in rule generation.

• CMAR [12]. It uses a recognized algorithm (FP-Growth [27]) from ARM to obtain
rules without candidate generation.

• CPAR [13]. It adopts a greedy algorithm to generate interval association rules directly.
• C4.5 [1]. One of the most well-known algorithms to generate a decision tree in the

same way as ID3 algorithm [5].
• RIPPER [28]. It is a rule-based learner that builds a set of rules to identify the classes

while minimizing the amount of error (the number of training examples misclassified
by the rules).

• CORE [29]. It is a coevolutionary algorithm for rules induction. It coevolves rules and
rule sets concurrently in two cooperative populations.

• OneR [30]. It is a simple, yet accurate, classification algorithm that generates one rule
for each predictor in the data. Then, it selects the rule with the smallest total error as
its one rule.

Big Data algorithms

• MRAC [31]. Distributed association rule-based classification scheme shaped
according to the MapReduce programming model.

• MRAC+ [31]. Improved version of MRAC where some time-consuming operations
were removed.

• DAC [32]. Ensemble learning which distributes the training of an associative
classifier among parallel workers.

• DFAC-FFP [33]. An efficient distributed fuzzy associative classification approach
based on the MapReduce paradigm.

In order to analyze each of the aforementioned algorithms, an experimental study
has been performed. In this study, the main and most important criteria to choose an
algorithm is described as:

• Predictive power. In this regard, accuracy rate [5] and Cohen’s kappa rate [34] have
been considered. The accuracy rate (number of successful predictions relative to the
total number of examples in data) has been taken since it is the most well-known
metric in classification. On the contrary, an due to accuracy may achieve unfair
results with imbalanced data, Cohen’s kappa rate [34] has been considered, evaluating
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the actual hits that can be attributed to the classifier and not by mere chance. It takes
values in the range [−1, 1], where a value of −1means a total disagreement, a value
of 0 may be assumed as a random classification, and a value of 1 is a total agreement.
This metric is calculated as Kappa = N

∑k
i=1 xii−

∑k
i=1 xi·x·i

N2−∑k
i=1 xi·x·i

, where xii is the count of
cases in the main diagonal of the confusion matrix, N is the number of instances and,
finally, x·i and xi· are the column and row total counts respectively.

• Interpretability has been selected as one of the main reasons of using AC, that is, to
obtain interpretable classifiers that facilitate the understanding from an expert in the
domain. Rules with a less quantity of attributes and classifiers formed by a small
number of rules are denoted as more interpretable from a point of view of a human
expert. In this sense, it is straightforward to state that the ideal classifier would be
composed of a small number of rules with very few variables. Let C be a classifier
including a set of rules, i.e. C = {R0, ...,Rn}, the complexity or interpretability of C is
calculated as complexity(C) = n

∑n
i=0 attributes(Ri), where n is the number of rules

used by the classifier C, Ri is a specific rule of the form Ri = X → y in the position i
of the classifier C, and attributes(Ri) is defined as the number of variables, i.e. |X|,
that Ri includes.

• Efficiency is of great interesting since, nowadays, more and more data is daily
generated and it is vital to propose approaches that are able to be scaled out and to
obtain results, in a reasonable quantum of time.

Then, the analysis is exclusively focused on Big Data algorithms. Three well-known
metrics have been used to show how our proposals behave [19]. Next, each metric is
briefly described.

• Speed-up [19]: given a fixed job run on a small system, and then run on a larger
system, the speed-up is measured as speed − up(p) = T1

Tp
, where p is the number of

nodes, T1 is the execution time on one node and Tp is the execution time on p nodes.
It holds the problem size constant, and grows the system.

• Scale-up [19]: is defined as the ability of a N-times larger system to perform an
N-times larger job in the same elapsed time as the original time. Thus, it measures
the ability to growth both the system and the problem. It is defined as
scale − up(D, p) = TD1

TDp
, where D is the dataset, TD1 is the execution time for D on

one node, TDp is the execution time for p × D on p nodes.
• Size-up [19]: it measures how much longer it takes on a given system, when the

dataset size is p larger than the original dataset. It is defined as size − up(D, p) = Tp
T1
,

where Tp is the execution time for processing p × D and T1 is the execution time for
processing data.

Finally, all the experiments have been run on a HPC cluster comprising 12 compute
nodes, with two Intel E5-2620 microprocessors at 2 GHz and 24 GB DDR memory. Clus-
ter operating system is Linux CentOS 6.3. As for the specific details of the used software,
the experiments have been run on Spark 2.0.0 and Flink 1.3.0.

Results
All the algorithms studied in this work have been analyzed in function of the different
criteria and considering non-parametric tests. The result for each analysis is as follows:
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• Analysis of the predictive power: all the aforementioned algorithms have been
analyzed according to both the accuracy and kappa quality measures. CPAR obtained
the best result.

• Interpretability: from the best algorithms obtained in the previous study, an analysis
of interpretability have been performed considering both number of rules and
attributes. CBA obtained the best results.

• Efficiency: after the two previous analysis, the best algorithms have been compared
with regard to quantity of time. CBA was the best algorithm.

Additionally, two additional analyses were performed. First, traditional approaches on
traditional datasets were considered to prove the importance of parallelizing such algo-
rithms. Second, Big Data algorithms and datasets were considered. The proposals for Big
Data (CBA-Spark/Flink and CPAR-Spark/Flink) are deeply analyzed and compared to the
state-of-the-art in Big Data proving that they scale very well in terms of metrics such as
speed-up, scale-up and size-up.

Discussion
This section discuss the implications of the findings in context of existing research.

Comparative study on predictive power, interpretability and efficiency

The aim of this section is to analyze all the aforementioned algorithms according to three
main criteria: predictive power, interpetability and efficiency. It is important to remark
that the best algorithms for each criterion are the only ones used in the experimental
analysis of the following criterion. Each of these three analyses are carried out from two
different perspectives: classical algorithms and datasets (aiming at proving that our pro-
posal outperforms the state-of-art even when a small quantity of data is considered); Big
Data algorithms and datasets (aiming at comparing to current state-of-art in Big Data).
Finally, it is important to remark that classical approaches cannot be run on Big Data
datasets.

Analysis of the predictive power

The goal of this study is to analyze the quality of the solutions, in terms of Accuracy and
Kappa measures, obtained by different algorithms.

Classical state-of-art

Analyzing the accuracy (see Table 2), it is obtained that CMAR and OneR obtained the
worst results. This behavior is caused by the fact that OneR only uses a unique rule to
predict on the whole datasets. It should be noted that in those datasets comprising a huge
number of instances, a higher number of rules are required to cover all the instances.
Besides, CMAR did not obtain good results since it optimizes the confidence measure in
isolation, that is, it generates very specific classifiers that are not able to correctly pre-
dict unseen examples. As for CBA and its improved version CBA2, they obtained good
results in terms of accuracy, being even close to the results obtained by C4.5. It should be
highlighted that, among all the algorithms under study, CPAR obtained the best results
for the Accuracy metric. Finally, focusing on the Kappa metric (see Table 2), very similar
results were obtained, although in this case the difference between CPAR and C4.5 is not
so high.
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Table 2 Classical algorithms

Algorithm Ranking

Ranking for the accuracy measure

CMAR 6.200

OneR 5.566

CORE 5.516

CBA 4.466

Ripper 4.500

CBA2 3.383

C4.5 3.816

CPAR 2.550

Ranking for the kappa measure

OneR 6.083

CORE 5.750

CMAR 5.683

CBA 4.633

Ripper 3.816

CBA2 3.516

C4.5 3.300

CPAR 3.216

Average ranking for each algorithm (sorted in descending order) according to the Friedman test. Bold typeface denotes the
algorithm whose ranking was the best

In order to analyze whether there are any statistical difference in the previous results,
several non-parametric tests have been performed. First, a Friedman test has been run
on the Accuracy measure, obtaining a X2

F = 52.894 with a critical value of 18.475 and a
p-value = 3.889−9. Therefore, it is possible to assert that there exist some kind of sta-
tistical difference among the algorithms for this measure with α = 0.01. In the same
way, a X2

F = 50.042 with a critical value of 18.475 and a p-value = 1.418−8 has
been obtained for the Kappa metric, meaning that there exist some statistical differ-
ences among the algorithms for α = 0.01. Next, a post-hoc test has been performed
to state among which algorithms there exist any difference. In this regard, Table 3
shows the p-values for the Holland test with α = 0.01. CPAR has been selected
as control since it achieved the best ranking in the previous analysis. Focusing on
the Accuracy measure, results of this post-hoc test (see Table 4) denoted some sta-
tistical differences with regard to CMAR, CORE and OneR. The rest of algorithm
equally behaves in terms of Accuracy measure. Finally, focusing on the Kappa mea-
sure, results of this post-hoc test (see Table 4) revealed some statistical differences with
regard to CMAR, CORE and OneR. To sum up, among the ten selected algorithms,

Table 3 Classical algorithms

CBA2 CPAR C4.5 Ripper

CBA 0.983 0.000 0.000 0.000

p-value for the Holland test with α = 0.01 for the complexity measure. Bold typeface denotes the algorithm whose ranking was
the best
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Table 4 Classical algorithms

CBA CBA2 CMAR C4.5 Ripper CORE OneR

Results for the accuracy measure

CPAR 0.048 0.810 0.000 0.500 0.042 0.000 0.000

Results for the kappa measure

CPAR 0.317 0.996 0.002 0.996 0.977 0.002 0.000

p-values for the Holland test with α = 0.01. Bold typeface denotes the algorithm whose ranking was the best

five of them equally behave according to the predictive power (measured with Accu-
racy and Kappa metrics) and, therefore, additional criteria need to be used to select the
best approach.

Big Data state-of-art

Table 5 shows the ranking for Big Data algorithms for accuracy measure. DAC obtained
close results to those obtained byMRAC.MRAC+was the next best algorithm, improving
its original non-improved version (MRAC). DFAC-FFP obtained also good results but not
as good as those obtained by CBA Spark/Flink. CPAR Spark/Flink has been the algorithm
which achieved the best performance on accuracy measure. Similarly, Table 5 shows the
ranking for kappa measure. The results are very similar to those previously obtained. The
unique difference was between MRAC andMRAC+ where in this case this last algorithm
obtained worse performance than MRAC. Again, CPAR Spark/Flink has been the best
algorithm.
In order to study whether there are any statistical significant difference among the

results, several non-parametric tests have been considered. First, a Friedman test has been
performed on accuracy measure obtaining a X2

F = 36.5 with a critical value of 15.086 and
a p-value= 7.543−7. Hence, it is possible to state some kind of statistical significant differ-
ences among the algorithms. Likewise, a Friedman test has also been performed on kappa
measure obtaining a X2

F = 45.371 with a critical value of 15.086 and a p-value = 1.219−8.

Table 5 Big Data algorithms

Algorithm Ranking

Ranking for accuracy measure

DAC 5.100

MRAC 5.000

MRAC+ 4.150

DFAC-FFP 3.550

CBA Spark/Flink 2.000

CPAR Spark/Flink 1.200

Ranking for kappa measure

DAC 6.000

MRAC+ 4.700

MRAC 4.150

DFAC-FFP 2.950

CBA Spark/Flink 1.950

CPAR Spark/Flink 1.250

Average ranking for each algorithm (sorted in descending order) according to the Friedman test when 10 Big Data datasets are
considered. Bold typeface denotes the algorithm that achieves the best ranking
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Next, a post-hoc test has also been performed to find among which algorithms there are
any kind of differences. In this sense, Table 6 shows p-values for the Holland test with
α = 0.01. Thus, it could be stated that there are some statistical differences with regard
to MRAC, MRAC+ and DAC. Then, it has not been possible to find differences in terms
of accuracy for CPAR Spark/Flink, CBA Spark/Flink and DFAC-FFP. Finally, focusing on
kappa measure (see Table 6), shows statistical differences with regard to MRAC, MRAC+
and DAC.
Considering these results and comparing with those obtained in classical algorithms, it

is found the same behavior. CPAR obtained the best performance so much in small data
as in big data. CBA did not obtain very different results than those obtained by CPAR,
however in average they have been a little worse.

Analysis of the interpretability

Continuing with the analysis of the interpretability, the number of attributes per rule as
well as the number of rules have been analyzed.

Classical state-of-art

The average ranking for the complexity measure is shown in Table 7. CBA obtained
the best results closely followed by its improved version CBA2. CPAR, C4.5 and Ripper
obtained the worst results and, among them, there are not many big differences. In order
to analyze these results in a statistical way, a Friedman test has been performed, obtain-
ing a X2

F = 66.647 with a critical value of 13.277 and a p-value = 2.698−14, meaning
that it exists some kind of statistical differences among the complexity of the solutions of
these algorithms. Next, a post-hoc test has been performed to state among which algo-
rithms there exist any type of differences. In this sense, Table 3 shows the p-values for the
Holland test with α = 0.01. Taking into account only the interpretability, the algorithm
with the best ranking has been selected as control, that is, CBA. Results of this post-hoc
test proved that CPAR, C4.5 and Ripper obtained statistical significant differences with
regard to CBA. However, when comparing CBA and CBA2, an additional criterion is
required since no statistical difference was obtained among them for the interpretability
measure.

Big Data state-of-art

Table 8 shows the average ranking for the complexity measure. CBA Spark/Flink has out-
performed the rest of algorithms achieving the most interpretable classifiers. DFAC-FFP
obtained better results than CPAR Spark/Flink. This results are very similar to those
obtained in classical algorithms. CPAR almost always obtains a very large number of rules
hampering interpretability of classifiers. Unlikely, CBA obtained almost always the best

Table 6 Big Data algorithms

CBA Spark/Flink MRAC MRAC+ DFAC-FFP DAC

Results for the accuracy measure

CPAR Spark/Flink 0.773 0.000 0.005 0.049 0.000

Results for the kappa measure

CPAR Spark/Flink 0.643 0.000 0.006 0.229 0.000

p-values for the Holland test with α = 0.01. Bold typeface denotes the algorithm whose ranking was the best
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Table 7 Classical algorithms

Algorithm Ranking

Ripper 4.000

C4.5 3.850

CPAR 3.783

CBA2 1.700

CBA 1.667

Average ranking for complexity measure of each algorithm (sorted in descending order) according to the Friedman test. Bold
typeface denotes the algorithm whose ranking has been the best

possible results since it obtained small rules (few attributes) and classifiers with a small
number of rules.
In order to find some statistical significant differences among the results several

non-parametric test have been performed. Firstly, a Friedman test has been performed
obtaining a X2

F = 11.450 with a critical value of 9.210 and a p-value = 0.003 proving
that there are some kind of differences. Then, a post-hoc test has been performed to state
among which algorithms there are differences. In this way, Table 9 shows the p-values for
the Holland test with α = 0.01. It proves that there are differences with regard to CPAR
Spark/Flink.

Analysis of the efficiency

Once the predictive power and the interpretability of the solutions have been analyzed,
the final criteria to be considered is efficiency. In this sense, only the best algorithms until
the moment have been taken into account.

Classical state-of-art

The runtime for the CBA and CBA2 algorithms were measured, and a Wilcoxon
signed rank test was performed obtaining a Z-value= −2.519 with p-value = 0.005.
Results denoted that some statistical differences were found when comparing CBA
and CBA2 with α = 0.01, CBA2 obtaining the worst results. The explanation behind
this fact is simple, CBA2 needs to build a classifier by means of a close adaptation
of CBA. Then, it builds a decision tree method as in C4.5 and, at the same time, a
Naive-Bayes method is also performed. It means that, in the best case, CBA2 requires
the same time as CBA. However, in practice, this best case was rarely found since
the building of the tree also consumes a quantity of time that increases the overall
runtime.

Table 8 Big Data algorithms

Algorithm Ranking

CPAR Spark/Flink 2.600

DFAC-FFP 2.250

CBA Spark/Flink 1.150

Average ranking for complexity measure of each algorithm (sorted in descending order) according to the Friedman test. Bold
typeface denotes the algorithm whose ranking has been the best
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Table 9 Big Data algorithms

DFAC-FFP CPAR Spark/Flink

CBA Spark/Flink 0.028 0.004

p-value for the Holland test with α = 0.01 for the complexity measure. Bold typeface denotes the algorithm whose ranking was
the best

Big Data state-of-art

Finally, the runtime of the two best algorithms have been studied. Time for CBA
Spark/Flink has been the average obtained in the two platforms, being both very similar.
In the next section, a different study is performed to prove whether exists differ-
ences between these two platforms. A Wilcoxon signed rank test has been performed
obtaining a Z-value= −2.310 obtaining that classical CBA implemented on cur-
rent distributed computing obtained statistically significant differences with regard to
DFAC-FFP.

Conclusions achievedwith this analysis on three different criteria

After performing a complete analysis based on three different criteria, next the follow-
ing conclusions could be stated. Two algorithms for AC have been selected to be adapted
to Big Data platforms. On the one hand, CBA has been considered since it obtained
a good trade-off among predictive power, interpretability and efficiency. On the other
hand, CPAR has proved to obtain very accurate classifiers in a reduced quantum of
time but the interpretability of the results is not so good compared to other such as
CBA and CBA2. In this regard, if the time required to produce results can be improved,
it is obvious that CPAR should be used due to its good results in predictive power.
On the contrary, when a high interpretability is required, CPAR is not recommended
but CBA.
Very similar results have been obtained in Big Data. CPAR Spark/Flink obtained

the best results in terms of performance. When interpretability is considered, CBA
Spark/Flink is the winner outperforming both DFAC-FFP and CBA Spark/Flink. Finally,
CBA Spark/Flink has also obtained the most efficient results.

Scalability of the different proposals in Big Data

The goal of this analysis is to study the scalability of the different proposals in Big Data.
In this regard both the original and the adaptations have been run on a series of synthetic
datasets. This kind of datasets has been selected due to the fact that only the runtime
is analyzed because both algorithms have proved to obtain accurate and interpretable
classifiers on real-world datasets. Furthermore, synthetic datasets enables to change both
the number of instances and the search space easily to study the behavior when different
data sizes are considered. On this matter, the datasets have been generated following a
Gaussian distribution where the number of instances ranges from 1 · 104 to 1 · 108, with
a search space ranging from 6500 to 1.04229 , and file sizes up to 200 GBytes have been
included.
Figure 1 shows the behavior of the selected algorithms when the number of instances

changes. As it is illustrated, when the number of instances is low CBA-Sequential is more
efficient than CPAR-Sequential, that is because CBA is more direct in building the clas-
sifier than the greedy algorithm used in CPAR. Neither the implementations based on
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Fig. 1 Runtime of the different implementations of CBA and CPAR when the number of instances drastically
changes

Spark or Flink obtained good runtime with few instances. When the number of instances
continues growing, the approaches based on Spark And Flink obtained much better per-
formance that sequential methodologies. Finally, it should be remarked that between the
implementations of Spark and Flink of each algorithm there are not many differences,
Spark obtained a small better performance than Flink although it is not game-changing.
Between CBA-Spark/Flink and CPAR-Spark/Flink, this last method obtained a better per-
formance than CBA-Spark/Flink thanks to its greedy approach that in this case is more
efficient than considering all the possible cases as an exhaustive search like the used in
CBA-Spark/Flink does.
Continuing with this study, it has also been considered of high interest to analyze

how the behavior of the proposals varies when the search space changes. The search
space was calculated as the number of feasible rules that can be mined from data
(3k − 2k+1 − 1 where k is the number of items). To perform this analysis several syn-
thetic datasets were used where the number of attributes were changed to analyze the
performance on different search spaces. In this regard, Fig. 2 shows the performance,
proving that the behavior is more different than in the previous analysis. It is due to
the fact that CPAR-Sequential is not as affected as CBA-Sequential thanks to its greedy
methodology. With a small search space, the proposals based on Spark and Flink do
not obtain a good performance however when the search space increases, they begin to
obtain a very good performance. Finally when the number of search spaces highly grows,
CPAR-Spark/Flink obtained a good performance followed by CBA-Spark/Flink. With this
large search space sequential approaches are not able to be run, requiring several hours
to end.
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Fig. 2 Runtime of the different implementations of CBA and CPAR when the search space drastically increases

The analysis now continues considering only Big Data approaches. In this regard, three
well-known metrics have been studied [19]. Firstly, speed-up is analyzed aiming at mea-
suring how algorithms behave when parallelism increases (without altering data size).
Figures 3 and 4 show the results when the number of nodes increases from 1 to 12 with
different data sizes, as it could be seen speed-up holds linear proving that performance

Fig. 3 Speed-up for CBA Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used
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Fig. 4 Speed-up for CPAR Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

increases linearly with the number of nodes. Then, scale-up is analyzed to see how well
the proposed algorithms handle larger datasets when more nodes are available. In this
case the size of the dataset is increased in direct proportion with the number of nodes
in the system. Figures 5 and 6 shows that it is practically evaluated to 1 in almost the
cases being linear and proving good scalability [19]. Lastly, size-up is analyzed where
the number of nodes grows from 1 to 12 and the sizes of datasets from 10 GBytes to
120 GBytes (see Figs. 7 and 8). As the result shows, the size-up performance of our
proposals is also very good.

Fig. 5 Scale-up for CBA Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used



Padillo et al. Big Data Analytics             (2019) 4:2 Page 25 of 27

Fig. 6 Scale-up for CPAR Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

Conclusion
In this work an experimental study including 40 datasets and 12 different algorithms
have been performed. This analysis has been arranged having into account three differ-
ent criteria. First, predictive power of the algorithms have been measured by means of
both kappa and accuracy. Second, the interpretability of the classifiers have been studied.
Finally, the efficiency has been also measured. After performing this experimental study,
two different algorithms of the state-of-art have been selected. On the one hand, CBA has
been selected since it obtained a very good predictive power, and the best results in terms

Fig. 7 Size-up for CBA Spark when the number of nodes changes. Only Spark version has been run on this
case since it behaves in the same way as Flink
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Fig. 8 Size-up for CPAR Spark when the number of nodes changes. Only Spark version has been run on this
case since it behaves in the same way as Flink

of interpretability. On the other hand, CPAR was selected after obtaining the very best
results for predictive power in a reduced quantum of time.
These two algorithms have been adapted to be run on Big Data platforms considering

both Apache Spark and Apache Flink. These adaptations obtained the same results as
the sequential approaches but in a reduced quantum of time. Finally, an analysis of the
scalability has also been performed considering files sizes up to 200 GBytes proving that
our methods are able to work in an efficient way in Big Data, where sequential approaches
would never be able to work in a efficient way.

Endnotes
1 The original pseudocode can be found at http://www.uco.es/kdis/cba-cpar/
2The original pseudocode can be found on at http://www.uco.es/kdis/cba-cpar/.
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