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Abstract

Modeling and analyses of complex systems using network theory have been an
object of study for a long time. They have caught attention in many disciplines such
as sociology, epidemiology, ecology, psychology, biology, biomedicine, and other
fields. Network theory is especially an efficient tool to model biological networks
such as gene co-expression networks, protein-protein interaction networks, or
pathways. Considering the enhanced resolutions of complex real-world systems, the
interest has been directed to multilayered networks. However, despite this surge of
recent attention, the use of the multilayer framework in the biological field is still in
its youth. In this paper, we review the different aspects and terminologies of
multilayered networks. We also briefly discuss the variant applications of the
multilayer framework, and finally, we give an overview of various existing
applications of the multilayer model in network biology.
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Background
In this review, we address the lack of a terminology convention in the field of multi-

layered networks, by distinguishing their different abstract formulation and aspects.

For each aspect, we distinguish the appropriate applications, based on its structure and

the state-of-the-art articles. We also describe and illustrate the different implementa-

tions of these aspects, with their assets and usage in previous research. In addition, we

enumerate the various published state-of-the-art articles, in which the authors used a

multilayer framework to model networks in Biomedicine, and solve different biomed-

ical problems. We discuss the convenience of this usage and the reasons to choose spe-

cific implementations to solve specific problems.

Introduction
Network theory has been used for many years in the modeling and analysis of complex

systems. As the data evolves and becomes more heterogeneous and complex,
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monoplex networks become an oversimplification of the corresponding systems [1, 2].

In the case of biological networks, the represented systems are complex as well as the

problems studied, and exploiting information from a new perspective might improve

the understanding of biological structure and functionality [3]. In fact, the classical net-

work representation used for years seems to fail against the heterogeneity of the objects

and the relations. This imposes a need to go beyond traditional networks into a richer

framework capable of hosting objects and relations of different scales [4], called Multi-

layer Network.

The term Multilayer Networks has been used by many scientists over the years.

These networks have many definitions and implementations. One of these definitions is

presented by Allard et al. [5], who define a Multilayer or a Multitype Network by a net-

work with a set of N Nodes each assigned a type from a set of M types. However, the

definition of a Multilayer Network is much broader. The simplest definition of a multi-

layer network is a set of nodes, edges, and layers, where the interpretation of the layers

depends on the implementation of the model. One of the main problems faced when

studying these graphs is the absence of a terminology and a nomenclature convention.

In their review of Multilayer Networks, Kivelä et al. [4] summarize the different naming

of these networks in a table of 26 different names. We have come to learn that some of

the names are representing the same structure and framework, but others depend on

the type of the graph.

Multilayer Networks provide better modeling for complex networks, like biological

networks. These networks are heterogeneous in different manners since any biological

function is rarely depending on just one element or type of interaction between the ele-

ments. The importance of their usage in the domain of biomedicine was briefly dis-

cussed by some researchers [1], but to our knowledge, it was never assimilated and

reviewed. With this review, we aim at summarizing the different state-of-the-art articles

that used a multilayer framework in biomedicine. This article is divided into 3 sections.

In the first one, we present an abstract formulation of a multilayer graph and the differ-

ent criteria for choosing layers. We explain the transformation from a monolayer to a

multilayer framework. The second section explores the implementation of the multi-

layer framework, as well as usage examples. In the third section, we summarize some

of the state-of-the-art articles that have been published in different fields of biomedi-

cine and are all using one of the different implementations of multilayer networks.

Multilayered networks: aspects and terminologies
The multilayer nature of graphs has been a subject of study for multiple years. Consid-

ering that this framework has many applications in various fields, its interpretation and

implementation depend on the subject it is serving. The main difference between the

types is the criteria to link a node to a layer. It is indeed crucial to determine how the

layers should be assigned when converting from a monoplex to a multilayer model [4].

In this context, two types of networks can be distinguished.

Node-colored graphs

Node-colored graphs (Fig. 1) are representations of systems with heterogeneous nodes.

Nodes have different aspects or types, defined by colors. The graph GN (Eq. 1) is a tuple
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defined by a set of nodes V, a set of edges E, and a set of layers C, where layers repre-

sent the color of the nodes [4]. Two nodes on layers α and β are connected with an

edge Eαβ.

GN ¼ V ; E;Cð Þ; Vα∈V � C; Eαβ∈V α � V β; where α; β∈C ð1Þ

In such graphs, the focus is exploiting the topology of the system from a node-based

perspective. In most of the cases, the graph is layer-disjoint, i.e. the node can only be-

long to one layer, having only one color.

Edge-colored graphs

Edge-colored graphs (Fig. 2) are representations of systems with heterogeneous connec-

tions between the nodes. The graph GE (Eq. 2) is a tuple defined by a set of nodes V, a

set of colors C with length b, and a set of edges E, each assigned a type or aspect de-

fined by the color. Edges of the same color belong to the same layer. Each layer can

contain a subset or the complete set of nodes.

GE ¼ V ; E;Cð Þ
Gαf gbα¼1 ¼ V α; Eαð Þf gbα¼1; ∀α; β∈C Vα¼V β;

Eα∈V α � V α � C
Gαf gbα¼1 ¼ V α; Eαð Þf gbα¼1

ð2Þ

The graph is node-aligned, i.e. the same node can belong to different layers simultan-

eously. In such graphs, the focus is on the dynamics of the network and the interactions

between its components. It is very efficient to use when studying different aspects of

the same system. Two nodes can only connect using one edge of each color. In case

the same type of connection should be established between two nodes, this framework

can be combined with another one to reach this purpose [4].

Implementations of multilayered networks
In this section, we present to you the main types and implementations of the multilayer

framework. For each implementation, we enumerate some of their applications in dif-

ferent fields.

Fig. 1 Node-colored Graphs. Nodes having similar colors are grouped in the same layer. The edges are the
same as in the original network
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Multiplex networks

Multiplex Networks (Fig. 3) are edge-colored graphs, where the nodes connect with

edges belonging to M different aspects (Eq. 3). The edges are embedded based on their

type in different layers all containing the complete set of nodes X of length n [4, 6–8].

Multiplex networks explore and incorporate the interconnectivity of the same system

in multiple channels represented by the layers [9].

Mlayers; fGα; α∈f1;⋯;Mgg; Gα ¼ ðXα;EαÞ; withXα

¼ fx1;⋯; xNg ð3Þ

A perfect example of a multiplex network is a social network, where different social

interactions between individuals are studied, for example, friendship, vicinity, kinship,

membership of the same cultural society, partnership or co-workership, etc. [8, 10].

The nodes, in this case, are the individuals, and the edges are the interactions between

them. These networks were studied thoroughly over the past years since they are of

great importance in affecting our daily lives. The study of these networks is particularly

important for social media companies like Facebook, which helps them establish con-

nections between their users and improve their services, including family connections,

friendships, social interests, political views, etc., based on the information provided by

the users, like backgrounds, demographics, etc. [11].

Another application presented by Cardillo et al. [12] introduces The European Air

Transportation Multiplex Network, consisting of 37 layers representing the European

airlines, N number of nodes representing the airports in Europe, and links between the

nodes representing the direct flights.

Multilevel networks

Multilevel networks (Fig. 4) are edge-colored graphs. They are similar to multiplex net-

works, with a difference being that layers can contain not only a subset of edges but a

subset of nodes as well. The graph (Eq. 4) is a tuple defined by the sets of nodes X,

edges E, and layers S with length p.

Fig. 2 Edge-colored Graphs. The nodes of the original networks are replicated over the different layers. The
layers represent the different aspects of relationships in the network. Edges are divided among the layers
based on their colors
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M ¼ X;E; Sð Þ
S ¼ S1;…; Sp

� �
sub−graphs

With S j ¼ X j; E j
� �

; j ¼ 1;…; p

X ¼ ∪
p

j¼1
X j E ¼ ∪

p

j¼1
E j

ð4Þ

An example of the application of this framework is the Urban Transportation

Network modeled by Aleta et al. [13]. In their paper, the authors present a multi-

level model, representing various transportation methods in nine cities in Europe.

The nodes are the different stops, while the layers are the different modes of trans-

portation. This network is multilevel because the nodes or the stops do not exist

on all the layers.

Multi-hypernetworks

Multi-Hypernetworks or hypergraphs (Fig. 5) are node-based graphs [1, 4],

formed by different intersecting communities or sub-networks. A Multi-

hypergraph (Eq. 5) is defined by a pair (X, H), X being the set of nodes, and H a

multi-set of subsets of X being the edges [14]. These graphs focus on the nodes

belonging to the same group rather than the connections between them. Nodes

in the same subset are mapped to a layer with fully connected nodes. The notion

Fig. 3 A Multiplex Graph. The nodes of the network are replicated over layers, and each layer represents a
particular aspect of connection between the nodes
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of edges here differs from normal networks; edges in these networks are called

hyperedges and can connect multiple nodes at the same time [4, 15–17]. Each

hyperedge is then mapped to a single layer. Multi-Hypernetworks are not layer-

disjoint, but node-aligned since one node can be assigned to multiple layers,

based on the intersection of the subsets.

Fig. 4 Multilevel Graph. Each layer of the graph is a subset of the original network (nodes and intra-edges).
The inter-edges only connect the same nodes on different layers

Fig. 5 Hypernetwork. Adapted from [1]. a The network in a monoplex view; b The network in a multilayer
view. Nodes belonging to the same ensemble are assigned the same layer. All the nodes on one layer are
intra-connected. The same nodes on different layers are interconnected (dotted edges)
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φ ¼ X;Hð Þ
H ¼ H1;…Hp

� �
sub−sets

Eαβ ¼ x; xð Þ; x∈Xα∩Xβ
� �

;where α; β∈H
ð5Þ

Hypernetworks are optimal representations of networks with n-ary relationships since

they allow hyperedges connecting more than 2 nodes at the same time [18]. They have

been mainly used in Folksonomy, where a semantic structure is created by a collabora-

tive annotation. An example of this application is Flickr, used to share multimedia be-

tween users, who are allowed to tag them. The network here can be viewed as a

tripartite Hypernetwork consisting of three types of nodes being the users, the re-

sources and the tags, and hyperedges connecting those three, meaning a user annotat-

ing a resource with a tag [1, 4, 16, 19].

Another application is presented by Chan and Hsu [20], where they discuss how the

usage of hypernetworks in the service science can reveal hidden social structures in hu-

man networks, and therefore provide a better understanding of them.

Hypernetworks are also used in team sport networks. As presented by Ramos et al.

[18], these networks can be used to study multiple aspects of interactions between the

players, like spatiotemporal interactions, which inspects the dynamics of the game at

different times and spots.

Interacting/interconnected/interdependent networks and networks of networks

This framework (Fig. 6) is a set of monoplex networks interacting with each other.

Nodes can have intra-edges as well as inter-edges connecting them. The inter-edges E

define the interactions between the L different monoplex networks G (Eq. 6), but a de-

pendency in interdependent networks, i.e. some of the nodes in each network are

dependent on nodes from others [1, 4, 21, 22]. The multilayer model of these networks

is node-colored, layer-disjoint formed by embedding the different monoplex networks

each into a single layer, then connecting them with their inter-edges. These networks

help achieve global synchronization between different sub-systems [1].

G1;G2;…GLf g
Eαβ ¼ interaction between Gα and Gβ

ð6Þ

Examples of such networks are transportation, telecommunication, electrical grids

[23], and social networks [24]. The infrastructure network, in particular, is a perfectly

fitting example, since it relies on electricity to function. This dependency between the

networks makes this framework vulnerable since a failure in one part can cascade to

affect the whole network. This problem has caught a lot of attention and many scien-

tists are still studying it [22, 23, 25–28].

Multilayered networks and biology
Biological networks are difficult to explore because they contain a mass number of

nodes connected in myriad ways. The best way to obtain information from these net-

works is to summarize the information about the nodes and links conveniently [29].

This summarization follows the criteria which we discussed in our first section but de-

pends on the biological domain. Some domains require edge-colored methodologies to
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explore the different interactions between the molecules, like gene co-expression net-

works, or protein-protein interaction networks, or different behavior in cross-species

networks. Others require node-colored frameworks, like cell networks to integrate in-

terconnected and interdependent networks.

This usage is still in its infancy in some domains, like gene-expression networks, but

very thriving in others, like epidemiology.

In this section, we summarize the usage of the multilayer framework in Biology with

state-of-the-art work on this topic.

Protein-protein interaction networks

Protein-protein interaction (PPI) networks are collections of interactions between two

or more proteins binding to carry a certain function [30], where nodes are the proteins

and edges are physical or functional interactions between them [31]. These networks

are heterogeneous in regard to the different types of interactions between them. The

network could be seen as an edge-colored Multiplex or Multilevel network inspecting

diverse aspects of interactions.

OhmNet [32] is an algorithm that transforms monoplex networks into a multilayer

model. This algorithm aims at studying proteins in different tissues and learning their

features. In this model, the tissues act as layers, and the proteins act as nodes. The

model implemented by OhmNet was used in a recent publication by Kapadia et al. [33]

to predict features of a multi-layer blood cell PPI network.

Multilayer PPI networks have also been used to study the life stages in species. In

[34], the life stages in Caenorhabditis elegans are modeled in a node-colored multilayer

network, where protein interactions are collected from various bioinformatics reposi-

tories, and then proteins occurring in different life cycles are distributed over six layers

representing the different life stages.

Another Multilayer model introduced by Zhao et al. [35] aims at integrating PPI net-

work, protein domain information, and protein complexes. The authors present a

Multiplex edge-colored model consisting of three layers: the physical interaction layer

(PIL), containing the protein-protein interactions, sharing domain layer (SDL), with

Fig. 6 Interacting/Interconnected Networks. Adapted from [1]. a The network in a monoplex view; b The
network in a multilayer view. Nodes belonging to the same system are assigned the same layer. Inter- and
intra-edges are kept the same
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proteins connected in case they share the same domain, and sharing complex layer

(SCL), in case they are contained in the same complex. The nodes are the proteins rep-

licated over the three layers (Fig. 7).

In addition, the High-Throughput data integration method implemented by Liang

et al. [36] used an edge-colored Multiplex framework. The base of the graph is PPI net-

works from yeast and human interactomes which form the two layers, weighted with

transcriptional data, and combined with biomedical knowledge.

Cell networks

Cell networks or pathways represent complex functions and reactions that occur in the

cell. They describe interactions between genes, proteins, and metabolites [37]. To under-

stand the cell structure, one needs to investigate not only these molecules and their intra-

connectivity in isolation, but also their inter-connectivity. Gligorijević and Pržulj in [38]

illustrate the cell network as an interdependent network of five layers: phenotypes, gen-

ome, proteome, metabolome, and transcriptome. The study of these different substrates

results in a heterogeneous network formed of different types of nodes and interactions.

An example of a cell network is implemented by Liu et al. in [37], where they use a

node-colored multilayer consisting of a gene-regulatory layer, PPI layer, and a metabol-

ite layer. The genes are connected to their gene products on the PPI layer directly, and

proteins are connected to metabolites in a many-to-many relation when they associate

or participate in the same chemical reaction.

In [39], Rai et al. demonstrate how the usage of a multilayer framework helps to under-

stand the behavior of cancer cells. In their paper, the authors study seven different cancer

types (breast, oral, ovarian, cervical, lung, colon, and prostate), using a multilevel network

model. Their model consists of seven layers for two networks, the normal and the disease

networks, in which each layer reflects a cancer type. The nodes are the proteins in PPI

networks, chosen based on their expression in normal and cancer cells. The common pro-

teins are then extracted in three different sets: common in all normal cells, common in all

cancer cells, and common in normal and disease cells (Fig. 8).

A similar work by Yu et al. [40] employs a multiplex network of three layers, for PPI

networks in three different tissues: breast, prostate, and blood. They study the overlapping

between the genes under the action of the drug trichostatin A (TSA) in three diseases it

treated, leukemia, breast cancer, and prostate cancer. They identified two drug-target

modules of TSA (M17, M18) as the potential treatment patterns of TSA.

Another paper by Li et al. [41] aims at identifying frequent coupled transcription-

splicing modules. They build a two-layer interconnected model of gene co-expression

networks and exon co-splicing networks. The layers contain respectively genes and

exons, inter-connected if there is a relationship between them, and intra-connected if

they are respectively co-expressed and co-spliced.

A tool also addressing data integration in Biology using a multilayer approach is Syn-

ergy Landscapes by Kuzmin et al. [42]. The tool constructs a multilayer model to con-

nect researchers with resources through molecular interactions. The model integrates

three networks: bio-medical co-authorship collaboration networks, molecules interact-

ing in bioprocesses and papers describing them, and networks of bioprocesses involved

in various diseases.
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As an initiative for pathway data integration, we presented in a previous work a tool

called mully [43]. The tool is an R package to create, modify, and visualize multilayer

graphs. We aim at collecting pathway knowledge from different databases and embed

the different elements into a node-colored multilayer model (Fig. 9).

One of the pathway databases is Reactome, which is manually curated, open-source,

and fully downloadable [44]. Reactome contains BioPAX-encoded pathways that could

be parsed using the R package rBiopaxParser implemented by Kramer et al. [45]. An-

other pathway resource is ndex, which is an online commons where scientists are able

to upload and share networks [46]. The ndex servers can be queried using the R pack-

age ndexr implemented by Auer et al. [47], in order to download, modify, and upload

networks.

Fig. 7 Multilayer Protein Network. Adapted from [35]. The figure shows the edge-colored multiplex graph
implemented by Zhao et al. [35], with three layers representing different interactions between the proteins
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Gene expression networks

The complexity in genetic networks lies in the diversity of interactions between genes. A gene

network is a collection of gene-gene regulatory connections [48]. It contains information on

genes affecting each other with their expression levels. These networks can be inspected from

a multiplex or a multilevel framework, with layers representing co-expression profiles in dif-

ferent settings including different time points, diseases, cells, or organisms, as well as from a

Hypernetwork framework, with edges connecting more than two genes [48, 49].

In [50], Li et al. use a multiplex framework to illustrate co-expression networks to

identify heavy recurrent subgraphs. The networks are extracted from microarray data-

sets, and each network is assigned to a layer.

In the paper describing the software muxViz [3], the authors also use genetic net-

works as an example to demonstrate their tool, used to visualize multiplex networks.

In another publication [51], Klosik et al. use an interdependent framework to study

interactions between metabolites and genes. Their model consists of three layers: the

gene regulatory layer, the protein-interface layer, and the metabolic layer.

Human neural networks

Neural networks are one of the most complex networks in the human body. A brain network

is a structural network where nodes represent neural elements, i.e. the neurons or neuronal

regions, and edges represent the physical connection between them, i.e. synapses or axonal

projections. The connections in these networks are also affected by spatial factors, which

means that the location and distance between the elements play a role in the probability of

them being connected [52]. The modeling of brain networks on multiple levels is an evocative

application, since they are continuously evolving, and different factors should be considered,

such as temporal and spatial factors or different frequency bands. This model has been

reviewed and adapted by many scientists to study the human brain in recent years [53–59].

Fig. 8 Multilayer Cancer Cells’ Network. Adapted from [39]. The Figure shows two graphs, normal and
disease. The nodes in these graphs are the proteins, assigned to seven layers reflecting seven cancer types
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Jérémy Guillon presents in his Ph.D. thesis [60] a multiplex network of the human

brain with Alzheimer’s disease containing information from the brain at different fre-

quency bands [61]. This model combines structural and functional connectivity in the

brain and is used to detect core-periphery organizations [62].

Similarly, Dang et al. [63] present in their paper the Multivariate Time-Frequency

Multilayer (MTFM) network, which is an edge-colored model to study the dynamics of

two complex systems, namely oil-water flow, and driving fatigue in the brain. The

model explores these dynamics by dividing the key frequency over L layers, each of

which contains nodes representing the channel time-series, and edges representing mu-

tual information connections. The driving fatigue in the brain MTFM network shows

the changing of state in the brain during driving from alert to mental fatigue.

A similar model was also introduced by Brookes et al. [64] to study magnetoencepha-

lography (MEG) data connectivity.

Spreading processes and disease behavior networks

Epidemiology is one of the biological fields in which the multilayer framework is used

extensively. It is used to study the transmission and spreading of diseases between indi-

viduals, which is based on heterogeneous factors, like age, geographical locations, social

status, and sexual behavior. These factors are used to assign the individuals of the

population classes or types [65].

Examples of spreading networks are the epidemic models, SIR and SIS. In SIR, the in-

dividuals are assigned one of three traits: susceptible, meaning not yet infected but sus-

ceptible to infection, infected, meaning already carry the disease and can transmit it,

and removed, meaning previously infected and do not transmit anymore. The infection

Fig. 9 A mully multilayer model. Each layer reflects a single type of the pathways’ elements. The graph
is node-colored

Hammoud and Kramer Big Data Analytics             (2020) 5:2 Page 12 of 18



starts with some individuals called seeds, and get transferred to adjacent or neighbor

individuals at a certain time. So the nodes can go from susceptible to infected, or when

cured to removed. In SIS, the individual only goes from infected to susceptible [65–69].

Although these models can be seen as node-colored graphs at different timestamps

[70], they are mainly implemented as edge-colored. In [71] the authors use a two-layer

interconnected model to study the interaction between two SIR-epidemics. Kivelä et al.

[4] list a significant number of references on these implementations. An immunization

strategy is also presented in [72] using the multiplex two-layer SIR model.

An adaptation of the SIR model is used by Riad et al. [73] to assess the risk of spreading

of Ebola in Uganda. The authors propose a combination of SIR concept with a social net-

work. Their model consists of two layers representing the interactions between the people,

a permanent layer being family relations, and a temporal layer being the other general con-

nections. The nodes, which are the individuals, can have either of two types (active and in-

active) depending on if they carry the disease or not, and they are distributed in 23 districts.

In their publication [5], Allard et al. discuss some of the difficulties and problems

faced in epidemiology when using simple models, like the iid hypothesis, and state the

advantages of transforming them into multitype networks, using HIV as an example.

Mao and Yang [74] present another approach using multilayer networks, in which

they use a two-layer multiplex model to demonstrate that infections and preventive be-

havior are transmitted simultaneously and affect each other. The individuals are repli-

cated over both layers. The first layer contains the transmission relationships, and the

second contains the interactions of influencing preventive behavior. Later the same au-

thor presents a similar model with an extra layer called Information, signifying whether

the person was informed or uninformed of the disease [75] (Fig. 10). A similar ap-

proach is later used by Carnell et al. [76].

Fig. 10 A Multilayer Triple-diffusion Network. Adapted from [75]. The layers illustrate three diffusion
processes. The nodes have different colors based on the state of the individuals in each network. The
dotted lines connect the same nodes on the three layers. The arrows between the layers denote a positive
(green) and negative (red) effect between the processes
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dbNEI is a web-based knowledge resource that collects information related to the

neuro-endocrine-immune systems (NEI) [77]. The database was later updated to

dbNEI2.0, by adding new molecules and information. dbNEI2.0 builds a multilayer net-

work for drug-NEI-disease. The model is node-colored, consisting of three layers, dis-

eases, drugs, and NEI genes layers [78].

In other work, scientists were interested in disease-disease interactions and connec-

tions. Halu et al. present in [79] a two-layer model of diseases. On the genotype layer,

Table 1 Classification of the references based on the used implementation

Aspect Implementation Application Field Reference

Node-colored Interconnected Cell Networks [37, 41–43]

Epidemiology [78, 80]

Interdependent Cell Networks [38]

Gene Expression Networks [51]

Multitype Epidemiology [5, 34, 70]

Edge-Colored Multiplex PPI Networks [35, 36]

Cell Networks [40]

Gene Expression Networks [3, 50]

Human Neural Networks [60–62]

Epidemiology [71–76, 79]

Multilevel PPI Networks [32, 33]

Cell Networks [39]

Human Neural Networks [63, 64]

Fig. 11 Multiplex disease-disease interaction network. Adapted from [79]. The graph consists of two layers.
The nodes are the diseases, connected on the first layer if they share a phenotypic interaction, and on the
second if they share a genotypic one

Hammoud and Kramer Big Data Analytics             (2020) 5:2 Page 14 of 18



the diseases are linked in case they share a disease gene, while on the phenotype layer,

they are linked if they share a symptom (Fig. 11).

Moreover, in [80], Yu et al. construct a four-layer similarity model of four disease in-

terconnected networks: Human Disease Network Based on Protein Interaction Network

(PIDN), Human Disease Similarity Network Based on Symptoms (DSDN), Gene Ontol-

ogy- and Disease Ontology-Based Disease Similarity Networks (GODN and DODN).

They aim at getting more accurate conserved disease modules and find potential

disease-disease relationships.

In Table 1, the references are listed for each aspect, implementation and biomedical

application of multilayered graphs.

Conclusions
The usage of Multilayer Graphs has proven to be very promising and prosperous in dif-

ferent fields of application, especially in Biology. Multilayer Graphs allow better inspec-

tion and representation of the topology and dynamics of heterogeneous systems

compared to monoplex models [1]. In the case of biological networks, the heterogeneity

lies in the diversity of interacting substrates, as well as in the various channels of inter-

actions between them. Many scientists have adapted the multilayer model to solve

complex biomedical problems in recent years, by using particular implementations for

different situations. For instance, muxViz can be used to visualize edge-colored multi-

layer networks, such as multiplex or multilevel networks for gene expression data. Our

tool mully can be used to create, modify, and visualize multi-omics data, like pathways,

drugs, and diseases in a node-colored multilayer model [43].

The multilayer framework has many other applications yet to be discovered. Another

approach is to mix different implementations in one model. For instance, a node-

colored multilayer model built to integrate different omics data can contain five layers:

protein, genes, metabolites, diseases, and drugs. However, it can be extended by divid-

ing the protein and the gene layers to exploit gene co-expressions in multiple tissues or

environment, and different protein-protein interactions from different experimental

protocols [4]. This indeed helps reduce the loss of data and obtaining misleading results

[3], detect patterns and correlations, and avoid hairball effects, resulting from the high

number of interactions between the nodes.
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